Skip to main content

Advertisement

Log in

Alpha-Synuclein Aggregates Associated with Mitochondria in Tunnelling Nanotubes

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The interaction of α-synuclein with mitochondria in both typical and atypical Parkinson’s disease is a critical component of degeneration. The mechanism of cell-to-cell propagation of pathological α-synuclein in synucleinopathies is unclear. Intercellular exchange of mitochondria along tunnelling nanotubes has been described in other diseases, such as cancer; however, its role in synucleinopathies is unknown. Pathological α-synuclein species have been demonstrated previously to move from cell to cell via tunnelling nanotubes. This process was further explored using co-culture and monoculture systems to determine if α-synuclein binds to migrating mitochondria within tunnelling nanotubes. Super-resolution analysis via stimulated emission depletion microscopy showed interaction between α-synuclein with the mitochondrial outer membrane and the presence of alpha-synuclein associated with mitochondria in tunnelling nanotubes between 1321N1, differentiated THP-1 and SH-SY5Y cell types. siRNA knockdown of Miro1, a critical protein-bridging mitochondria to the motor adaptor complex, had no effect on mitochondrial density or α-synuclein association with mitochondria in tunnelling nanotubes. The results show that α-synuclein aggregates associate with mitochondria in intercellular tunnelling nanotubes, suggesting that mitochondria-mediated α-synuclein transfer between cells may contribute to cell-to-cell spread of α-synuclein aggregates and disease propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

dH2O:

Deionised H2O

DMEM:

Dulbecco’s modified Eagle medium

FACS:

Fluorescence-activated cell sorting

MSA:

Multiple system atrophy

NGS:

Normal goat serum

NHS:

Normal Horse serum

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

PMA:

Phorbol-12-myristate-13-acetate

RIPA:

Radioimmunoprecipitation assay

ROS:

Reactive oxygen species

RT:

Room temperature

SDS:

Sodium dodecyl sulfate

siRNA:

Silencer RNA

STED:

Stimulated emission depletion

TnTs:

Tunnelling nanotubes

TOM:

Translocase of outer membrane receptor

WB:

Western blot

References

  • Abounit S, Delage E, Zurzolo C (2015) Identification and characterization of tunneling nanotubes for intercellular trafficking. Curr Protoc Cell Biol 67(1):12.10.1–12.10.21

    Google Scholar 

  • Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin J, Melki R, Zurzolo C (2016a) Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 35(19):2120–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abounit S, Wu J, Duff K, Victoria G, Zurzolo C (2016b) Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10(5):344–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agnati L, Fuxe K (2014) Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 369(1652):20130505–20130505

    PubMed  PubMed Central  Google Scholar 

  • Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari B, Jha K, Barhanpurkar A, Wani M, Roy S, Mabalirajan U, Ghosh B, Agrawal A (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 9(33):994–1010

    Google Scholar 

  • Austefjord M, Gerdes H, Wang X (2014) Tunneling nanotubes. Commun Integr Biol 7(1):e27934

    PubMed  PubMed Central  Google Scholar 

  • Babenko V, Silachev D, Popkov B, Zorova L, Pevzner I, Plotnikov E, Sukhikh G, Zorov D (2018) Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules 23(3):687

  • Bean B (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465

    CAS  PubMed  Google Scholar 

  • Bowdish D (2011) Maintenance & culture of THP-1 cells. [online] Hamilton: Bowdish lab macrophage biology, pp.1-2. Available at: http://www.bowdish.ca/lab/wp-content/uploads/2011/07/THP-1-propagation-culture.pdf [Accessed June 2018]

  • Brickley K, Stephenson F (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286(20):18079–18092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calì T, Ottolini D, Negro A, Brini M (2012) α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287(22):17914–17929

    PubMed  PubMed Central  Google Scholar 

  • Chinnery H, Pearlman E, McMenamin P (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180(9):5779–5783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinta S, Mallajosyula J, Rane A, Andersen J (2010) Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486(3):235–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Morfini G, Langhamer L, He Y, Brady S, Kordower J (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135(7):2058–2073

    PubMed  PubMed Central  Google Scholar 

  • Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166

    CAS  PubMed  Google Scholar 

  • Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, Zurzolo C (2013) Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 126(16):3678–3685

    CAS  PubMed  Google Scholar 

  • David G, Barrett E (2003) Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548(2):425–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Maio R, Barrett P, Hoffman E, Barrett C, Zharikov A, Borah A, Hu X, McCoy J, Chu C, Burton E, Hastings T, Greenamyre J (2016) α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8(342):342ra78–342ra78

    PubMed  PubMed Central  Google Scholar 

  • Dieriks B, Park T, Fourie C, Faull R, Dragunow M, Curtis M (2017) α-Synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci Rep 7:42984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dilsizoglu Senol A, Pepe A, Grudina C, Sassoon N, Reiko U, Bousset L, Melki R, Piel J, Gugger M, Zurzolo C (2019) Effect of tolytoxin on tunneling nanotube formation and function. Sci Rep 9(5741):5741

    PubMed  PubMed Central  Google Scholar 

  • Dong L, Kovarova J, Bajzikova M, Bezawork-Geleta A, Svec D, Endaya B, Sachaphibulkij K, Coelho A, Sebkova N, Ruzickova A, Tan A, Kluckova K, Judasova K, Zamecnikova K, Rychtarcikova Z, Gopalan V, Andera L, Sobol M, Yan B, Pattnaik B, Bhatraju N, Truksa J, Stopka P, Hozak P, Lam A, Sedlacek R, Oliveira P, Kubista M, Agrawal A, Dvorakova-Hortova K, Rohlena J, Berridge M, Neuzil J (2017) Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife, 6(e22187)

  • Dupont M, Souriant S, Lugo-Villarino G, Maridonneau-Parini I, Vérollet C (2018) Tunneling nanotubes: intimate communication between myeloid cells. Front Immunol, 9(43)

  • Eugenin E, Gaskill P, Berman J (2009) Tunneling nanotubes (TNT). Commun Integr Biol 2(3):243–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiebig C, Keiner S, Ebert B, Schäffner I, Jagasia R, Lie D, Beckervordersandforth R (2019) Mitochondrial dysfunction in astrocytes impairs the generation of reactive astrocytes and enhances neuronal cell death in the cortex upon photothrombotic lesion. Front Mol Neurosci, 12

  • Follett J, Darlow B, Wong M, Goodwin J, Pountney D (2013) Potassium depolarization and raised calcium induces α-synuclein aggregates. Neurotox Res 23(4):378–392

    CAS  PubMed  Google Scholar 

  • Follett J, Bugarcic A, Yang Z, Ariotti N, Norwood SJ, Collins BM, Parton RG, Teasdale RD (2016) Parkinson Diseaselinked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. J Biol Chem 291(35):18283–18298

  • Fransson Å, Ruusala A, Aspenström P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344(2):500–510

    CAS  PubMed  Google Scholar 

  • Goodwin J, Nath S, Engelborghs Y, Pountney DL (2013) Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 62(5):703–711

  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman D, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin J, Männel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336

    CAS  PubMed  Google Scholar 

  • Grassi D, Howard S, Zhou M, Diaz-Perez N, Urban N, Guerrero-Given D, Kamasawa N, Volpicelli-Daley L, LoGrasso P, Lasmézas C (2018) Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc Natl Acad Sci 115(11):E2634–E2643

    CAS  PubMed  Google Scholar 

  • Henrichs V, Grycova L, Barinka C, Nahacka Z, Neuzil J, Diez S, Rohlena J, Braun M, Lansky Z (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11(1):3123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ježek J, Cooper K, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants 7(1):13

    PubMed Central  Google Scholar 

  • Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657

  • Kay L, Pienaar I, Cooray R, Black G, Soundararajan M (2018) Understanding Miro GTPases: implications in the treatment of neurodegenerative disorders. Mol Neurobiol 55(9):7352–7365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, Gholami S, Moreira A, Manova-Todorova K, Moore M (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7(3):e33093

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacAskill A, Rinholm J, Twelvetrees A, Arancibia-Carcamo I, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler J (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melo TQ, Van Zomeren KC, Ferrari MF, Boddeke HW, Copray JC (2017) Impairment of mitochondria dynamics by human A53T alpha-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson's disease. Exp Brain Res 235(3):731–742

    CAS  PubMed  Google Scholar 

  • Katoh M, Wu B, Nguyen HB, Thai TQ, Yamasaki R, Lu H, Rietsch AM, Zorlu MM, Shinozaki Y, Saitoh Y, Saitoh S, Sakoh T, Ikenaka K, Koizumi S, Ransohoff RM, Ohno N (2017) Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Sci Rep 7(1):4942

  • Nakahira K, Haspel J, Rathinam V, Lee S, Dolinay T, Lam H, Englert J, Rabinovitch M, Cernadas M, Kim H, Fitzgerald K, Ryter S, Choi A (2010) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230

    PubMed  PubMed Central  Google Scholar 

  • O'Donnell KC, Lulla A, Stahl MC, Wheat ND, Bronstein JM, Sagasti A (2014) Axon degeneration and PGC-1alpha-mediated protection in a zebrafish model of alpha-synuclein toxicity. Dis Model Mech 7(5):571–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okafo G, Prevedel L, Eugenin E (2017) Tunneling nanotubes (TNT) mediate long-range gap junctional communication: implications for HIV cell to cell spread. Sci Rep 7(1):16660

    PubMed  PubMed Central  Google Scholar 

  • Panasiuk M, Rychłowski M, Derewońko N, Bieńkowska-Szewczyk K (2018) Tunneling nanotubes as a novel route of cell-to-cell spread of herpesviruses. J Virol, 92(10)

  • Parihar M, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65(7–8):1272–1284

    CAS  PubMed  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4(12):968–980

    CAS  PubMed  Google Scholar 

  • Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Bohm KJ, Winner B (2013) Alpha-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288(30):21742–21754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prots I, Grosch J, Brazdis R, Simmnacher K, Veber V, Havlicek S, Hannappel C, Krach F, Krumbiegel M, Schütz O, Reis A, Wrasidlo W, Galasko D, Groemer T, Masliah E, Schlötzer-Schrehardt U, Xiang W, Winkler J, Winner B (2018) α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc Natl Acad Sci 115(30):7813–7818

    CAS  PubMed  Google Scholar 

  • Prusiner S, Woerman A, Mordes D, Watts J, Rampersaud R, Berry D, Patel S, Oehler A, Lowe J, Kravitz S, Geschwind D, Glidden D, Halliday G, Middleton L, Gentleman S, Grinberg L, Giles K (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci 112(38):E5308–E5317

    CAS  PubMed  Google Scholar 

  • Randall T, Moores C, Stephenson F (2013) Delineation of the TRAK binding regions of the kinesin-1 motor proteins. FEBS Lett 587(23):3763–3769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rcom-H’cheo-Gauthier AN, Meedeniya ACB, Pountney DL (2017) Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. J Neurochem 141(2):263–274

  • Reeve A, Ludtmann M, Angelova P, Simcox E, Horrocks M, Klenerman D, Gandhi S, Turnbull D, Abramov A (2015) Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis 6(7):e1820–e1820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes J, Sackmann C, Hoffmann A, Svenningsson P, Winkler J, Ingelsson M, Hallbeck M (2019) Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes. Acta Neuropathol 138(1):23–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rostami J, Holmqvist S, Lindström V, Sigvardson J, Westermark G, Ingelsson M, Bergström J, Roybon L, Erlandsson A (2017) Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci 37(49):11835–11853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010

    CAS  PubMed  Google Scholar 

  • Ryan B, Hoek S, Fon E, Wade-Martins R (2015) Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends Biochem Sci 40(4):200–210

    CAS  PubMed  Google Scholar 

  • Sartori-Rupp A, Cordero Cervantes D, Pepe A, Gousset K, Delage E, Corroyer-Dulmont S, Schmitt C, Krijnse-Locker J, Zurzolo C (2019) Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun 10(342):342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaltouki A, Hsieh C, Kim M, Wang X (2018) Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. Acta Neuropathol 136(4):607–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Zhang J, Xiao H, Wu J, He K, Lv Z, Li Z, Xu M, Zhang Y (2018) Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis, 9(2)

  • Smith I, Shuai J, Parker I (2011) Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys J 100(8):L37–L39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tardivel M, Bégard S, Bousset L, Dujardin S, Coens A, Melki R, Buée L, Colin M (2016) Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 4(117):117

    PubMed  PubMed Central  Google Scholar 

  • Valdinocci D, Radford RA, Siow SM, Chung RS, Pountney DL (2017) Potential modes of intercellular α-synuclein transmission. Int J Mol Sci. 18(2)

  • Valdinocci D, Grant GD, Dickson TC, Pountney DL (2018) Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates. Mol Cell Neurosci 89:80–94

    CAS  PubMed  Google Scholar 

  • Valdinocci D, Simões RF, Kovarova J, Cunha-Oliveira T, Neuzil J, Pountney DL (2019) Intracellular and intercellular mitochondrial dynamics in Parkinson’s disease. Front Neurosci 13:930

    PubMed  PubMed Central  Google Scholar 

  • van Spronsen M, Mikhaylova M, Lipka J, Schlager M, van den Heuvel D, Kuijpers M, Wulf P, Keijzer N, Demmers J, Kapitein L, Jaarsma D, Gerritsen H, Akhmanova A, Hoogenraad C (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77(3):485–502

    PubMed  Google Scholar 

  • Vijayakumaran S, Nakamura Y, Henley JM, Pountney DL (2019) Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 101:103416

  • Wang X, Gerdes H (2015) Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22(7):1181–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Schwarz T (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136(1):163–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Becker K, Levine N, Zhang M, Lieberman A, Moore D, Ma J (2019) Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol Commun 7(1):41

    PubMed  PubMed Central  Google Scholar 

  • Watkins SC, Salter RD (2005) Functional Connectivity between Immune Cells Mediated by Tunneling Nanotubules. Immunity 23(3):309–318

  • Xie W, Chung KK (2012) Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. J Neurochem 122(2):404–414

    CAS  PubMed  Google Scholar 

  • Zhou R, Yazdi A, Menu P, Tschopp J (2010) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Marie Olšinová and the Imaging Methods Core Facility at BIOCEV, institution supported by the MEYS CR (Large RI Project LM2018129 Czech-Bioimaging) and ERDF (project no. CZ.02.1.01/0.0/0.0/16_013/0001775) for their support with obtaining imaging data presented in this paper.

Funding

This study is financially supported by Griffith University and BIOCEV. JN was supported in part by grant 20-05942S from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean L. Pountney.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdinocci, D., Kovarova, J., Neuzil, J. et al. Alpha-Synuclein Aggregates Associated with Mitochondria in Tunnelling Nanotubes. Neurotox Res 39, 429–443 (2021). https://doi.org/10.1007/s12640-020-00285-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00285-y

Keywords

Navigation