Skip to main content

Advertisement

Log in

The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

An encounter of the developing immune system with an antigen results in the induction of immunological areactivity to this antigen. In the case of transplantation antigens, the application of allogeneic hematopoietic cells induces a state of neonatal transplantation tolerance. This tolerance depends on the establishment of cellular chimerism, when allogeneic cells survive in the neonatally treated recipient. Since mesenchymal stem/stromal cells (MSCs) have been shown to have low immunogenicity and often survive in allogeneic recipients, we attempted to use these cells for induction of transplantation tolerance. Newborn (less than 24 h old) C57BL/6 mice were injected intraperitoneally with 5 × 106 adipose tissue-derived MSCs isolated from allogeneic donors and the fate and survival of these cells were monitored. The impact of MSC application on the proportion of cell populations of the immune system and immunological reactivity was assessed. In addition, the survival of skin allografts in neonatally treated recipients was tested. We found that in vitro expanded MSCs did not survive in neonatal recipients, and the living MSCs were not detected few days after their application. Furthermore, there were no significant changes in the proportion of individual immune cell populations including CD4+ cell lineages, but we detected an apparent shift to the production of Th1 cytokines IL-2 and IFN-γ in neonatally treated mice. However, skin allografts in the MSC-treated recipients were promptly rejected. These results therefore show that in vitro expanded MSCs do not survive in neonatal recipients, but induce a cytokine imbalance without induction of transplantation tolerance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that all data and materials support the published claims and comply with field standards.

References

  1. Billingham, R. E., Brent, L., & Medawar, P. B. (1953). Actively acquired tolerance of foreign cells. Nature (Lond.), 172, 603–605

    Article  CAS  Google Scholar 

  2. Hasek, M. (1953). Vegetative hybridization of animals by joing their blood circulations during embryonic life. Csech Biology, 2, 265–277

    Google Scholar 

  3. Holan, V., Chutna, J., & Hasek, M. (1978). Specific suppression of antigen-reactive cells in neonatal transplantation tolerance. Nature (Lond.), 274, 895–897

    Article  CAS  Google Scholar 

  4. Burnet, F. M. (1959). The clonal selection theory of acquired immunity. Cambridge University Press

    Book  Google Scholar 

  5. Nossal, G. J. (1991). Molecullar and cellular aspects of immunologic tolerance. European Journal of Biochemistry, 202, 729–737

  6. Schwartz, R. H. (2003). T cell anergy. Annual Review of Immunology, 21, 305–334

  7. Dorsch, S., & Roser, B. (1975). T cells mediate transplantation tolerance. Nature (Lond.), 258, 233–235

    Article  CAS  Google Scholar 

  8. Gao, Q., Rouse, T. M., Kazmerzak, K., & Field, E. H. (1999). CD4 + CD25 + cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation, 68, 1891–1897

    Article  CAS  Google Scholar 

  9. Lubaroff, D. M., Silvers, W. K. (1973). Importance of chimerism in maintaining tolerance of skin allografts in mice. Journal of Immunology, 111, 65–71

  10. Durkin, E. T., Jones, K. A., Rajesh, D., & Shaaban, A. F. (2008). Early chimerism threshold predicts sustained engraftment and NK-cell tolerance in prenatal allogeneic chimeras. Blood, 112, 5245–5253

    Article  CAS  Google Scholar 

  11. Zuber, J., & Sykes, M. (2017). Mechanisms of mixed chimerism-based transplant tolerance. Trends in Immunology, 38, 829–843

  12. Oura, T., Cosimi, A. B., & Kawai, T. (2017). Chimerism-based tolerance in organ transplantation: preclinical and clinical studies. Clinical and Experimental Immunology, 189, 190–196

    Article  CAS  Google Scholar 

  13. Sellers, M. T., Deierhoi, M. H., Curtis, J. J., Gaston, R. S., Julian, B. A., Lanier, D. C. Jr., & Diethelm, A. G. (2001). Tolerance in renal transplantation after allogeneic bone marrow transplantation-6-year follow-up. Transplantation, 71, 1681–1683

  14. Nunez-Villaveiran, T., Feasel, P., Keenan, S., Aliotta, R., Bosler, D., Stearns, D., Bergfeld W. & Gurunluoglu, R. (2019). Donor skin allograft survival after bone marrow transplantation: Case report and systematic review of the literature. Journal of Plastic, Reconstructive and Aesthetic Surgery, 72, 23–34

  15. Muñoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D. & Black, I. B. (2004). Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. Journal of Neuroscience, 24, 4585–4595

  16. Dai, W., Hale, S. L., Martin, B. J., Kuang, J.-Q., Dow, J. S., Wold, L. E. & Kloner, R. A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112, 214–223

  17. Tzameret, A., Sher, I., Belkin, M., Treves, A. J., Meir, A., Nagler, A. … Solomon, A. S. (2015). Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Research, 15, 387–394

  18. Caliari-Oliveira, C., Yaochite, J. N., Ramalho, L. N., Palma, P. V., Carlos, D., Cunha Fde, Q. … Voltarelli, J. C. (2016). Xenogeneic mesenchymal stromal cells improve wound healing and modulate the immune response in an extensive burn model. Cell Transplantation, 25, 201–215

  19. Liu, X. B., Chen, H., Chen, H. Q., Zhu, M. F., Hu, X. Y., Wang, Y. P. … Wang, J. A. (2012). Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. Journal of Zhejiang University - Science B, 13, 616–623

  20. Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., & Hoogduijn, M. J. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297

    Article  CAS  Google Scholar 

  21. Abdi, R., Fiorina, P., Adra, C. N., Atkinson, M., Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 57, 1759–1767

  22. Holan, V., Trosan, P., Cejka, C., Javorkova, E., Zajicova, A., Hermankova, B. ... Cejkova, J. (2015). A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells and Translation Medicine, 4, 1052–1063

    Article  CAS  Google Scholar 

  23. Weiss, A. R. R., & Dahlke, M. H. (2019). Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Frontiers in Immunology, 10, 1191. https://doi.org/10.3389/fimmu.2019.01191

  24. de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S. … Hoogduijn, M. J. (2018). Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells, 36, 602–615

  25. Preda, M. B., Neculachi, C. A., Fenyo, I. M., Vacaru, A. M., Publik, M. A., Simionescu, M., & Burlacu, A. (2021). Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death and Disease, 12, 566

    Article  CAS  Google Scholar 

  26. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., & Luo, L. (2007). A global double-fluorescent Cre reporter mouse. Genesis, 45, 593–605

  27. Holan, V., Echalar, B., Palacka, K., Kossl, J., Bohacova, P., Krulova, M. … Zajicova, A. (2021). The altered migration and distribution of systemically administered mesenchymal stem cells in morphine-treated recipients. Stem Cell Reviews and Reports, 14, 801–801

    Article  Google Scholar 

  28. Hajkova, M., Javorkova, E., Zajicova, A., Trosan, P., Holan, V., & Krulova, M. (2017). A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engineering and Regenerative. Medicine, 11, 1456–1465

    Article  CAS  Google Scholar 

  29. Lencova, A., Pokorna, K., Zajicova, A., Krulova, M., Filipec, M., & Holan, V. (2011). Graft survival and cytokine production in the experimental mouse model of limbal transplantation. Transplant Immunology, 24, 189–194

    Article  CAS  Google Scholar 

  30. Billingham, R. E., Brent, L., Medawar, P. B., & Sparrow, E. M. (1954). Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proceedings of the Royal Society of London B: Biological Sciences, 143, 43–58

  31. Hajkova, M., Jaburek, F., Porubska, B., Bohacova, P., Holan, V. & Krulova, M. (2009). Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clinical Science (Lond.), 133, 2143–2157

  32. Hasek, M., & Holan, V. (1981). Relative immunogenecity and tolerogenicity of individual regions or segments of the MHC. Scandinavian Journal of Immunology, 14, 669–672

    Article  CAS  Google Scholar 

  33. Bandeira, A., Coutinho, A., Carnaud, C., Jacquemart, F., & Forni, L. (1989). Transplantation tolerance correlates with high levels of T- and B-lymphocyte activity. Proceedings of the National Academy of Sciences of the United States of America, 86, 272–276

  34. Holan, V., Sedlackova, K. & Ruzickova, M. (1996). Production of high levels of Th1 and Th2 cytokines in mice with acquired transplantation tolerance. Cellular Immunology, 174, 7–12

  35. Chen, N., Gao, Q, Field, E. H. (1996). Prevention of Th1 response is critical for tolerance. Transplantation, 61, 1076–1083

  36. Tracy, S. A., Chalphin, A. V., Lazow, S. P., Kycia, I., Finkelstein, A., Chan, C. … Fauza, D. O. (2020). Postnatal fate of donor mesenchymal stem cells after transamniotic stem cell therapy in a healthy model. Journal of Pediatric Surgery, 55, 1113–1116

  37. Liao, X., Li, F., Wang, X., Yanoso, J., Niyibizi, C. (2008). Distribution of murine adipose-derived mesenchymal stem cells in vivo following transplantation in developing mice. Stem Cells and Development, 17, 303–314

  38. Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering Part B Reviews, 16, 445–453

    Article  Google Scholar 

  39. Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170

    Article  CAS  Google Scholar 

  40. Chua, B. A., & Signer, R. A. J. (2020). Hematopoietic stem cell regulation by the proteostasis network. Current Opinions in Hematology, 27, 254–263

    Article  Google Scholar 

  41. Muhammad, G., Xu, J., Bulte, J. W. M., Jablonska, A., Walczak, P. & Janowski, M. (2017). Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Scientific Reports, 7(1):4644

  42. Chen, Y., Tristan, C. A., Chen, L., Jovanovic, V. M., Malley, C., Chu, P.-H., Ryu, S., Deng, T., Ormanoglu, P., Tao, D., Fang, Y., Slamecka, J., Hong, H., LeClair, C. A., Michael, S., Austin, C. P., Simeonov, A., Singeç, I. (2021). A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nature Methods, 18, 528–541

  43. Hu, J., Yu, X., Wang, Z., Wang, F., Wang, L., Gao, H., Chen, Y., Zhao, W., Jia, Z., Yan, S., Wang, Y. (2013). Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrinology Journal, 60, 347–357

  44. Abumaree, M., Jumah, M. A., Pace, R. A., Kalionis, B. (2012). Immunosuppressive properties of mesenchymal stem cells. Stem Cell Reviews and Reports, 8, 375–392

  45. Holan, V., Hermankova, B., Krulova, M., & Zajicova, A. (2019). Cytokine interplay among diseased retina, inflammatory cells and mesenchymal stem cells – a clue to stem cell-based therapy. World Journal of Stem Cells, 11, 957–967

    Article  Google Scholar 

  46. Luk, F., de Witte, S. F., Korevaar, S. S., Roemeling-van Rhijn, M., Franquesa, M., Strini, T. … Hoogduijn, M. J. (2016). Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells and Development, 25, 1342–1354

Download references

Acknowledgements

We thank to Dr. Jan Prochazka (supported by Czech Science Foundation project No. 19-05076 S) from the Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic, for providing us with mT/mG mice.

Funding

This work was supported grant No. 19-02290 S from the Czech Science Foundatuion, and by the Charles University programs SVV 260435 and 20604315 PROGRES Q43.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. VH, MK and AZ designed the study, VH, BE, KP, JK, PB. BP, MK, EJ, and AZ performed the experiments, VH and MK wrote the paper, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Vladimir Holan.

Ethics declarations

This study did not involve human participants. The experiments with animals were approved by the local Animal Ethics Committee of the Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, and by ethical Committee of the Faculty of Science, Prague.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holan, V., Echalar, B., Palacka, K. et al. The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance. Stem Cell Rev and Rep 18, 2365–2375 (2022). https://doi.org/10.1007/s12015-022-10363-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10363-7

Keywords

Navigation