Skip to main content
Log in

CALPHAD-Based Thermodynamic Description of the Binary Phase Diagram Ge-Ti

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Ge-Ti binary phase diagram was remodeled using the CALPHAD approach implementing newly available experimental data and data from ab-initio calculations. The modelled phase diagram is based on a recently published experimental phase diagram, enthalpy of formation calculated by ab-initio methods, experimentally measured heat capacity of phases Ge3Ti5 and Ge5Ti6, enthalpy of formation of Ge3Ti5 at 298 K and enthalpy of mixing of liquid at 2000 K. A very good agreement with the experimental results was reached for Ge-Ti phase diagram and for the calculated thermodynamic properties, namely the enthalpy of mixing of the liquid phase at 2000 K and heat capacity of phases Ge3Ti5 and Ge5Ti6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Liu, H. Yan, X. Yuan, Y. Chung, Y. Du, H. Xu, L. Liu, and P. Nash, Thermodynamic Modeling of the Ge-Ti System Supported by Key Experiment, Thermochim. Acta, 2011, 521, p 148–154.

    Article  Google Scholar 

  2. R.W. Bittner, C. Collinet, J.C. Tedenac, and K.W. Richter, Revision of the Ge-Ti Phase Diagram and Structural Stability of the New Phase Ge4Ti5, J. Alloys Compd., 2013, 577, p 211–216.

    Article  Google Scholar 

  3. M.V. Rudometkina, Y.D. Seropegin, A.V. Gribanov, and L.S. Gusei, Phase Equilibria in the Titanium-Niobium-Germanium System at 1170 K, J. Less-Common Met., 1989, 147, p 239–247.

    Article  Google Scholar 

  4. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprczak, Binary Alloy Phase Diagrams, 2nd Ed., ASM, Materials Park, Ohio, (1990)

  5. J. Wirringa and M. Binnewies, Chemical Vapor Transport of Intermetallic Systems, Part 8. Chemical Transport of Titanium Germanides, Z. Anorg. Allg. Chem., 2000, 626, p 996–998.

    Article  Google Scholar 

  6. A.N. Shlapak, E.A. Beloborodova, and G.I. Batalin, Enthalpies of Mixing of Binary Molten Alloys of Germanium with Vanadium and Titanium, Zh. Fiz. Khim., 1978, 52(8), p 2097–2099.

    Google Scholar 

  7. Y.O. Esin, M.G. Valishev, A.F. Ermakov, P.V. Geld, and M.S. Petrushevskii, Enthalpies of Formation of Molten Germanium and Nickel Alloys With Titanium, Zhurnal Fizicheskoi Khimii, 1981, 55(3), p 753–754.

    Google Scholar 

  8. A. Yassin, M. Gilbert, and R. Castanet, Enthalpies of Formation of Binary Systems of Ti, V, Mo and Hf with Ge, J. Alloys Compd., 2001, 322, p L19–L22.

    Article  Google Scholar 

  9. O.J. Kleppa and W.G. Jung, Standard Enthalpies of Formation of Metal Germanides (M5Ge3; M=Titanium, Vanadium, Manganese, Iron, Cobalt, Nickel) by High Temperature Calorimetry, High Temp. Sci., 1990, 29(2), p 109–123.

    Google Scholar 

  10. E.V. Belokurov, G.I. Kalishevich, and P.V. Geld, Heat Capacity, Standard Enthalpies and Entropies of Titanium Germanide (Ti5Ge3) and Scandium Germanide (Sc5Ge3), Zh. Fiz. Khim., 1978, 52(11), p 2970–2971.

    Google Scholar 

  11. S. Zarembo, R.J. Kematick, C.E. Myers, and E.J. Cotts, Vaporization Thermodynamics and Heat Capacities of Ti5Ge3 and Ti6Ge5, J. Alloys Compd., 2000, 306, p 78–86.

    Article  Google Scholar 

  12. N. Saunders and A.P. Miodownik, Calphad (A Comprehensive Guide). Pergamon Press, Oxford, 1998.

    Google Scholar 

  13. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method. Cambridge University Press, New York, 2004.

    Google Scholar 

  14. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine PanOptimizer and PanPrecipitation for Multicomponent Phase Diagram Calculation and Materials Property Simulation, Calphad, 2009, 33, p 328.

    Article  Google Scholar 

  15. J.-O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, Thermo-calc and DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273–312.

    Article  Google Scholar 

  16. SGTE Unary Database, Version 4.4, www.sgte.org. Accessed (2020)

  17. M.I. McQuillan, A Study of the Titanium–Germanium System in the Region 0-11 Atomic Percent Germanium, J. Inst. Metals, 1955, 83, p 485–489.

    Google Scholar 

  18. O.K. Belousov and I.I. Kornilov, The Solubility of Germanium in Titanium, Izv. Akad. Nauk SSSR Met., 1976, 1, p 168–169.

    Google Scholar 

  19. V.C. Petersen and R.W. Huber, The Titanium–Germanium System from 0 to 30% Germanium, U.S. Bur. Mines Rept. Invest., 1957, 5365, p 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Zobač.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobač, O., Kroupa, A. CALPHAD-Based Thermodynamic Description of the Binary Phase Diagram Ge-Ti. J. Phase Equilib. Diffus. 44, 115–126 (2023). https://doi.org/10.1007/s11669-023-01028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-023-01028-0

Keywords

Navigation