Skip to main content
Log in

Experimental and Theoretical Study of the Ag-Sn-Te Phase Diagram

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Experimental and theoretical study of the Ag- Sn-Te system was carried out in the scope of the study. The isothermal sections at 350 and 500 °C were studied experimentally. The results were used together with other experimental data from the literature for the theoretical assessment of the system by the CALPHAD method. Generally, a very good agreement was obtained both for the phase diagram and for the enthalpies of mixing in the liquid phase. The existence of the ternary phase (AgxSn2-xTe2) was confirmed, and a slightly different composition (x = 0.8) was evaluated in the experimental part of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. B. Cai, H. Hu, H.-L. Zhuang, and J.-F. Li, Promising Materials for Thermoelectric Applications, J. Alloys Compd., 2019, 806, p 471-486.

    Article  Google Scholar 

  2. A. Allouhi, Advances on Solar Thermal Cogeneration Processes Based on Thermoelectric Devices: a Review”, Sol. Energy Mater. Sol. Cells, 2019, 200, p 109954.

    Article  Google Scholar 

  3. G. Tan, M. Ohta, and M.G. Kanatzidis, Thermoelectric Power Generation: From New Materials to Devices, Philos. Trans. R. Soc. A, 2019, 377, p 20180450.

    Article  ADS  Google Scholar 

  4. R. Moshwan, L. Yang, J. Zou, and Z.-G. Chen, Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges, Adv. Funct. Mater., 2017, 27, p 1703278.

    Article  Google Scholar 

  5. Y.Z. Pei, N.A. Heinz, and G.J. Snyder, Alloying to Increase the Band Gap for Improving Thermoelectric Properties of Ag2Te, J. Mater. Chem., 2011, 21, p 18256-18260.

    Article  Google Scholar 

  6. C.-H. Su, Design, Growth and Characterization of PbTe-Based Thermoelectric Materials, Prog. Cryst. Growth Charact. Mater., 2019, 65, p 47-94.

    Article  Google Scholar 

  7. L. Zhao, J. Wang, J. Li, J. Liu, C. Wang, J. Wang, and X. Wang, High Thermoelectric Performance of Ag Doped SnTe Polycrystalline Bulks via the Synergistic Manipulation of Electrical and Thermal Transport, Phys. Chem. Chem. Phys., 2019, 21, p 17978-17984.

    Article  Google Scholar 

  8. M.H. Lee, D.-G. Byeon, J.-S. Rhyee, and B. Ryu, Defect Chemistry and Enhancement of Thermoelectric Performance in Ag-Doped Sn1+δ−xAgxTe, J. Mater. Chem. A, 2017, 5, p 2235-2242.

    Article  Google Scholar 

  9. Y. Chen, M.D. Nielsen, Y.-B. Gao, T.- J. Zhu, X. Zhao, and J.P. Heremans, SnTe–AgSbTe2 Thermoelectric Alloys, Adv. Energy Mater., 2012, 2, p 58-62.

    Article  Google Scholar 

  10. J. Wu, J. Yang, H. Zhang, J. Zhang, S. Feng, M. Liu, J. Peng, W. zhu, and T. Zou, Fabrication of Ag-Sn-Sb-Te Based Thermoelectric Materials by MA-PAS and Their Properties, J. Alloys Compd., 2010, 507, p 167-171.

    Article  Google Scholar 

  11. L. Nykyruya, M. Ruvinskiya, E. Ivakinb, O. Kostyuka, I. Horichoka, I. Kisialioub, Y. Yavorskyya, and A. Hrubyaka, Low-Dimensional Systems on the Base of PbSnAgTe (LATT) Compounds for Thermoelectric Application, Phys. E (Amsterdam Neth), 2019, 106, p 10-18.

    Article  Google Scholar 

  12. J. Androulakis, K.-F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, and M.G. Kanatzidis, Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1–ySny)mSbTe2+m, Adv. Mater., 2006, 18, p 1170-1173.

    Article  Google Scholar 

  13. F.N. Rhines, Phase Diagrams in Metallurgy: Their Development and Application. McGraw-Hill, New York, 1956.

    Google Scholar 

  14. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformation: Their Thermodynamic Basis. Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  15. V.B. Rajkumar, and S.-W. Chen, Ag-Se Phase Diagram Calculation Associating ab-Initio Molecular Dynamics Simulation, Calphad, 2018, 63, p 51-60.

    Article  Google Scholar 

  16. R. Blachnik, G. Bolte, and B. Gather, Ternäre Chalkogenhaltige Systeme V Das Ternäre Phasendiagramm Silber-Zinn-Tellur, Z. Metallkde., 1978, 69, p 530-533. , in German

    Google Scholar 

  17. R. Blachnik, and B. Gather, Mischungen Von GeTe, SnTe und PbTe mit Ag2Te. Ein Beitrag zur Klärung der Konstitution der Ternären Ag-IVb-Te systeme (IVb = Ge, Sn, Pb), J. Less-Common Met., 1978, 60, p 25-32. , (in German)

    Article  Google Scholar 

  18. J.S. Chang, S.W. Chen, K.C. Chiu, H.J. Wu, and J.J. Chen, Liquidus Projection of the Ag-Sn-Te Ternary System, Metall. Mater. Trans. A, 2014, 45A, p 3728-3740.

    Article  ADS  Google Scholar 

  19. B. Gather, and R. Blachnik, Ag8SnTe6 Ein Neuer Stabiler Vertreter der Argyrodite?, Z. Naturforsch. A Phys. Sci., 1983, 38, p 786-787. , (in German)

    Article  Google Scholar 

  20. B. Gather, and R. Blachnik, Mischungsenthalpien in Ternären Systemen V: Das System Silber-Zinn-Tellur, Z. Met., 1986, 77, p 643-648. , (in German)

    Google Scholar 

  21. F. Römermann, and R. Blachnik, The Excess Enthalpies of Liquid Ag-Ge-Te and Ag-Sn-Te Alloys, Z. Met., 2001, 92, p 336-344.

    Google Scholar 

  22. Y. Liu, D. Liang, and L. Zhang, Thermodynamic Descriptions for the Sn-Te and Pb-Sn-Te Systems, J. Electron. Mater., 2010, 39, p 246-257.

    Article  ADS  Google Scholar 

  23. C.-S. Oh, J.-H. Shim, J.-H. Lee, and B.-Y. Lee, A Thermodynamic Study on the Ag-Sb-Sn System, J. Alloys Compd., 1996, 238, p 155-166.

    Article  Google Scholar 

  24. W. Gierlotka, The Thermodynamic Assessment of the Ag-Te System, Private Communication.

  25. N. Saunders, and A.P.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide. Elsevier Ltd, New York, 1998.

    Google Scholar 

  26. H. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method. Cambridge University Press, New York, 2007.

    Book  Google Scholar 

  27. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for materials Science, Calphad, 2002, 26, p 273-312.

    Article  Google Scholar 

  28. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.-A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for Multicomponent Phase Diagram Calculation and Materials Property Simulation, Calphad, 2009, 33, p 328-342.

    Article  Google Scholar 

  29. A. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317-425.

    Article  Google Scholar 

  30. SGTE Unary Database, ver. 5.0. www.sgte.net/en/free-pure-substance-database.

  31. O. Redlich, and A.T. Kister, Thermodynamics of Nonelectrolyte Solutions—x-y-t Relations in a Binary System, Ind. Eng. Chem., 1948, 40, p 341-345.

    Article  Google Scholar 

  32. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723 K–choice of Analytical Representation of Integral and Partial Thermodynamic Functions of Mixing for this Ternary System, J. Chim. Phys., 1975, 72, p 83-88.

    Article  Google Scholar 

  33. A. Dinsdale, A. Kroupa, A. Watson, J. Vrestal, A. Zemanova, and P. Broz, MP0602 HT SOLDERS database, COST MP0602 Action (2012)

  34. R.M. Honea, Empressite and Stuetzite Redefined, Am. Miner., 1964, 49, p 325-338.

    Google Scholar 

  35. A. Watson, Private Report, COST 531 Action, (2008)

  36. H. Flandorfer, C. Luef, and U. Saeed, On the Temperature Dependence of the Enthalpies of Mixing in Liquid Binary (Ag, Cu, Ni)-Sn Alloys, J. Non. Cryst. Solids., 2008, 354, p 2953-2972.

    Article  ADS  Google Scholar 

  37. P.Y. Chevalier, Unpublished Work, (2005)

  38. W. Gierlotka, “Thermodynamic Assessment of the Ag–Te Binary System, J. Alloys Compd., 2009, 485, p 231-235.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support of the Ministry of Science and Technology of Taiwan (MOST 107-2923-E-007-005-MY3) and the Czech Science Foundation (Project 18-25660J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Kroupa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sw., Kroupa, A., Du, Jy. et al. Experimental and Theoretical Study of the Ag-Sn-Te Phase Diagram. J. Phase Equilib. Diffus. 43, 139–163 (2022). https://doi.org/10.1007/s11669-022-00943-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00943-y

Keywords

Navigation