Skip to main content

Advertisement

Log in

Experimental Phase Diagram of the Ag-Se-Sn System at 250, 400 and 550 °C

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The ternary phase diagram Ag-Se-Sn was re-investigated experimentally. The current study was designed to contribute to a better understanding of phase equilibria in isothermal sections at 250, 400 and 550 °C using long-term annealed samples. An intermediate liquid region was observed at 550 °C in agreement with older published vertical sections of the ternary phase diagram Ag-Se-Sn. A huge homogeneity range in ternary intermetallic phase Ag8Se6Sn at 250 °C was determined by SEM/EDX analysis of long term annealed samples and confirmed by XRD measurements. A second ternary phase AgSe2Sn was observed at each of the studied temperatures. Complete isothermal sections at 250, 400 and 550 °C were constructed in the scope of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Tubtimtae, M.-W. Lee, and G.-J. Wang, Ag2Se Quantum-Dot Sensitized Solar Cells for Full Solar Spectrum Light Harvesting, J. Power Sources, 2011, 196, p 6603–6608.

    Article  ADS  Google Scholar 

  2. W. Mi, P. Qiu, T. Zhang, Y. Lv, X. Shi, and L. Chen, Thermoelectric Transport of Se Rich Ag2Se in Normal Phases and Phase Transitions, Appl. Phys. Lett., 2014, 104, p 133903.

    Article  ADS  Google Scholar 

  3. W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, and Z. Wang, Tin Selenide (SnSe): Growth, Properties, and Applications, Adv. Sci., 2018, 5, p 1–22.

    ADS  Google Scholar 

  4. Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, B. Gao, S. Lin, B. Zhou, A. Jain, and Y. Pei, Promising Thermoelectric Performance in Van Der Waals Layered SnSe2, Mater. Today Phys., 2017, 3, p 127–136.

    Article  Google Scholar 

  5. W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, and Y. Pei, Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag8SnSe6, Adv. Sci., 2016, 3, p 1600196.

    Article  Google Scholar 

  6. L. Li, Y. Liu, J. Dai, A. Hong, M. Zeng, Z. Yan, J. Xu, D. Zhang, D. Shan, S. Liu, Z. Ren, and J.-M. Liu, High Thermoelectric Performance of Superionic Argyrodite Compound Ag8SnSe6, J. Mater. Chem. C, 2016, 4, p 5806–5813.

    Article  Google Scholar 

  7. A. Ramakrishnan, S.W. Chen, and Y. Hutabalian, Ag-Se-Sn phase diagrams and Sn/Ag2Se interfacial reactions, J. Alloys Compd., 2020, 816, p 152670.

    Article  Google Scholar 

  8. Y.A. Yusibov, I.D. Alverdiev, L.F. Mashadieva, D.M. Babanly, A.N. Mamedov, and M.B. Babanly, Experimental Study and 3D Modeling of the Phase Diagram of the Ag-Sn-Se System, Zh. Neorg. Khim., 2018, 63(12), p 1607–1621.

    Google Scholar 

  9. O. Gorochov, R. Fitchet, and J. Flahaut, Diagramme de Phase et Proprietes du Systeme Ag2Se–SnSe2, C. R. Acad. Sci., 1966, 263, p 1422–1424.

    Google Scholar 

  10. L. I. Berger and V. D. Prochukhan, Ternary Diamond- Like Semiconductors Metallurgiya, Moscow, 1968.

  11. O. Gorochov, C. R. Acad. Sci. 266 (1968) 1060

  12. O. Gorochov, Les, composés Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te), Bull. Soc. Chim. Fr., 1968, 264, p 2263–2275.

    Google Scholar 

  13. K. Dovletov, S. N. Krzhivitskaya, and K. Tashliev, Izv. Tashliev, Fazovaya diagramma Ag2Se-SnSe, AN Turkm. SSR Ser. Fiz.-Tekh. Khim.-Geol. Nauk 1 (1974) 117.

  14. R. Ollitrault-Fitchet, J. Rivet, and J. Flahaut, Description du systeme ternaire Ag-Sn-Se, J. Less- Common Met., 1988, 138, p 241.

    Article  Google Scholar 

  15. V.M. Moroz, A.I. Shchurok, O.G. Mikolaichuk, M.V. Byalyk, V.F. Orlenko, D.I. Oleksyn, and M.B. Moroz, System Ag-Sn-Se. Structure of the T-x spacem Fiz, Khim. Tverd. Tila, 2003, 4(3), p 532–535.

    Google Scholar 

  16. M. Pirela, A. Velásquez-Velásquez, M. Villareal, B.J. Fernandez, L. Vivas, G. Sanchez Perez, Rev. Mex. Fis. 53 (2007) 262–264.

  17. D.C. Johnston, and H. Adrian, Superconducting and Normal State Properties of Ag(1 − x)Sn(l + x)Se(2 − y), J. Phys. Chem. Solids, 1977, 38, p 355–365.

    Article  ADS  Google Scholar 

  18. A. Wold, and R. Brec, Structure NaCl des Phases Agx Sn1x X (X = S, Se, Te), Mater. Res. Bull., 1976, 11, p 761–766.

    Article  Google Scholar 

  19. L.D. Gulay, I.D. Olekseyuk, and O.V. Parasyuk, Crystal Structure of β-Ag8SnSe6, J. Alloys Compd., 2002, 339(1–2), p 113–117.

    Article  Google Scholar 

  20. M.B. Babanly, and Yu.A. Yusibov, Electrochemical Methods in Thermodynamics of Inorganic System. Bakin. Gos. Univ, Baku, 2011.

    Google Scholar 

  21. M.V. Moroz, and M.V. Prokhorenko, Measurement of the Thermodynamic Properties of Saturated Solid Solutions of Compounds in the Ag-Sn-Se System by the EMF Method, Russ. J. Phys. Chem. A, 2015, 89c, p 1325–1329.

    Article  Google Scholar 

  22. M.V. Moroz, M.V. Prokhorenko, PYu. Demchenko, and O.V. Reshetnyak, Thermodynamic Properties of Saturated Solid Solutions of Ag7SnSe5Br and Ag8SnSe6 Compounds in the Ag–Sn–Se–Br System Measured by the EMF Method, J. Chem. Thermodyn., 2017, 106, p 228–231.

    Article  Google Scholar 

  23. J. Spreadborough, and J.W. Christian, High-Temperature X-ray Diffractometer, J. Sci. Instrum., 1959, 36, p 116–118.

    Article  ADS  Google Scholar 

  24. P. Cherin, and P. Unger, The Crystal Structure of Trigonal Selenium, Inorg. Chem., 1967, 6(8), p 1589–1591.

    Article  Google Scholar 

  25. J.A. Lee, and G.V. Raynor, The Lattice Spacings of Binary Tin-Rich Alloys, Proc. Phys. Soc., 1954, 67, p 737–747.

    Article  ADS  Google Scholar 

  26. J. Thewlis, and A.R. Davey, Thermal Expansion of Grey Tin, Nature (London), 1954, 174, p 1011.

    Article  ADS  Google Scholar 

  27. P. Rahlfs, Zeitschrift fuer Physikalische Chemie, Abteilung B: Chemie der Elementarprozesse, Aufbau der Materie, 1936, 31, p 157–194.

    Google Scholar 

  28. G.A. Wiegers, The Crystal Structure of the Low-Temperature Form of Silver Selenide, Am. Miner., 1971, 56, p 1882–1888.

    Google Scholar 

  29. H.W. King, and T.B. Massalski, Lattice spacing relationships and the electronic structure of h.c.p. zeta-phases based on silver, Philos. Mag., 1956, 8, p 669–682.

    Google Scholar 

  30. C.W. Fairhurst, and J.B. Cohen, The Crystal Structure of Two Compounds Found in Dental Amalgam: Ag2H and Ag3Sn, Acta Crystallogr. B, 1972, 28, p 371–378.

    Article  Google Scholar 

  31. H.G. von Schnering, and H. Wiedemeier, The High Temperature Structure of beta-Sn S and beta-Sn Se and the B16-to-B33 Type Lambda-Transition Path, Z. Kristallogr., 1981, 156, p 143–150.

    Google Scholar 

  32. A.S. Avilov, R.M. Imamov, and S.N. Navasardyan, Structure of Thin Films of SnS and SnSe, Kristallografiya, 1979, 24, p 874–875.

    Google Scholar 

  33. M.I. Karakhanova, A.S. Pashinkin, and A.V. Novoselova, Inorg. Mater., 1966, 2(7), p 1012–1014.

    Google Scholar 

Download references

Funding

This study was funded by Czech Science Foundation of Czech Republic (Grant Number GA 18-25660J). Authors would like to thank Pavla Roupcova from the Institute of Physics of Materials CAS for the technical help with analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Zobac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobac, O., Richter, K.W. & Kroupa, A. Experimental Phase Diagram of the Ag-Se-Sn System at 250, 400 and 550 °C. J. Phase Equilib. Diffus. 43, 32–42 (2022). https://doi.org/10.1007/s11669-022-00937-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00937-w

Keywords

Navigation