Skip to main content
Log in

Thermodynamic Description of Binary System Nickel-Selenium

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase diagram of the binary Ni-Se system has been modelled by the CALPHAD approach for the first time. The modelled phase diagram is based on a known experimental phase diagram, enthalpy of formation of the NiSe phase and heat capacity of the NiSe2 phase. All calculated data (the Ni-Se phase diagram, the standard enthalpy of mixing of the NiSe phase at 298 K and 1050 K and the heat capacity of NiSe2 in the temperature range 298-1000 K) reveal very good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Saunders, and A.P. Miodownik, Calphad (A Comprehensive Guide). Pergamon Press, Oxford, 1998.

    Google Scholar 

  2. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method. Cambridge University Press, New York, 2004.

    Google Scholar 

  3. G. Shen, D. Chen, K. Tang, C. An, Q. Yang, Y. Qian, and J. , Phase-Controlled Synthesis and Characterization of Nickel Sulfides Nanorods, Solid State Chem., 2003, 173, p 227.

    Article  ADS  Google Scholar 

  4. N. Umeyama, M. Tokumoto, S. Yagi, M. Tomura, K. Tokiwa, T. Fujii, R. Toda, N. Miyakawa, and S. Ikeda, Synthesis and Magnetic Properties of NiSe, NiTe, CoSe, and CoTe, Jpn. J. Appl. Phys., 2012, 51, p 053001.

    Article  ADS  Google Scholar 

  5. A. Kagkoura, T. Skaltsas, and N. Tagmatarchis, Transition-Metal Chalcogenide/ Graphene Ensembles for Light-Induced Energy Applications, Chemistry, 2017, 23, p 12967.

    Article  Google Scholar 

  6. N. Moloto, M.J. Moloto, N.J. Coville, and S. Sinha-Ray, Synthesis and Characterization of Nickel Selenide Nanoparticles: Size and Shape Determining Parameters, J. Cryst. Growth, 2011, 324, p 41–52.

    Article  ADS  Google Scholar 

  7. P.D. Matthews, P.D. McNaughter, D.J. Lewis, and P. O’Brien, Shining a Light on Transition Metal Chalcogenides for Sustainable Photovoltaics, Chem. Sci., 2017, 8, p 4177.

    Article  Google Scholar 

  8. J.P. Riba, Function of Porous Selenium-Nickel Electrode, J. Chim. Phys. Phys.- Chim. Biol., 1971, 68(3), p 485.

    Article  ADS  Google Scholar 

  9. K.L. Komarek, and K. Wessely, Die Systeme Nickel-Selen and Kobalt–Nickel—Selen, Monatsh. Chem., 1972, 103, p 923.

    Article  Google Scholar 

  10. S.Y. Lee, P. Nash, in: "Phase Diagrams of Binary Nickel Alloys", P. Nash (ed.), ASM Internationl, Materials Park, Ohio 1991.

  11. O. Predel, O. Madelung Ni-Se (Nickel-Selenium) Landolt-Börnstein - Group IV Physical Chemistry 5I (Ni-Np – Pt-Zr) 1998.

  12. F. Grønvold., Enthalpy of Formation of Iron Selenides and Nickel Selenides at 1050K, Acta Chemica Scandinavica 26 (1972) 2085.

  13. F. Grønvold, Heat Capacities and Thermodynamic Properties of Iron Diselenide and Nickel Diselenide from 300 to 1000 K, J. Chem. Thermodynamics, 1975, I, p 645.

    Article  Google Scholar 

  14. F. Grønvold, R. Mollerud, E. Rost, The High-Temperature Phases. Ni3Se2 and Ni6Se5, Acta Chem. Scand. 20 (1966) 1997

  15. J.H. Hiller, and W. Wegener, Untersuchungen im system nickel-selen, Neues Jahrb. Miner. Abh., 1960, 94, p 1147–1159.

    Google Scholar 

  16. K. Kuznetsov, A. Eliseev, Z. Spak, K. Palkina, M. Sokolova, A. Dimitriev, Proc. 4th All-Union Conf. Semiconductor Materials, Moscow, USSR (1961) 159

  17. F. Grønvold, and E. Jacobsen, X-Ray and Magnetic Study of Nickel Selenides in the Range NiSe and NiSe2, Acta Chem. Scand., 1956, 10, p 1440.

    Article  Google Scholar 

  18. G. Akesson, and E. Rost, A Superstructure of Ni6Se5, Acta Chem. Scand. Ser. A, 1975, 29, p 236.

    Article  Google Scholar 

  19. C. Fabre, Thermal Studies on the Selenides, Ann. Chim. Phys., 1887, 10, p 472.

    Google Scholar 

  20. F.R. Bichowsky, and F.D. Rossini, The Thermochemistry of Chemical Substances. Reinhold, New York, 1936.

    Google Scholar 

  21. F.D. Rossini, D.D. Wagman, W.H. Evans, S. Levine, I. Jaffe, Selected Values of Chemical Thermodynamic Properties, Natl. Bur. Std (US) Cirs. No 500, 1952.

  22. H. Jelinek, and K.L. Komarek, Thermodynamic Properties of Nickel-Selenium Alloys, Monatsh. Chem., 1974, 105, p 917.

    Article  Google Scholar 

  23. W. Cao, S.L. Chen, F Zhang, K. Wu, Yang Y., Chang Y.A., Schmid-Fetzer R., Oates W. A., PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for Multicomponent Phase Diagram Calculation and Materials Property Simulation, 33 (2009) 328

  24. SGTE Unary Database, Version 4.4.

  25. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The raw data required to reproduce these findings are available in appendix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Zobač.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure afigure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobač, O., Buchlovská, K., Pavlů, J. et al. Thermodynamic Description of Binary System Nickel-Selenium. J. Phase Equilib. Diffus. 42, 468–478 (2021). https://doi.org/10.1007/s11669-021-00906-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00906-9

Keywords

Navigation