Skip to main content
Log in

Cohesion of Dissimilar Splats in Hybrid Plasma-Sprayed Coatings: A Case Study for Al2O3-TiO2

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hybrid plasma spraying combines deposition of coarse dry powders and liquids, i.e., suspensions or solutions, thus expanding range of microstructures and functional properties achievable by thermal spraying. One of the crucial questions is how the miniature liquid-originated splats bond to the coarse splats deposited from powders and how their interaction influences the overall coating integrity. In this paper, cohesion of hybrid coatings was studied on model coatings deposited from Al2O3 powder and TiO2 suspension. Spraying distance and deposition temperature were varied as these two process variables influence the bonding between the splats in both conventional and liquid plasma spraying and the same may be expected for hybrid plasma spraying. Coatings without additional miniature splats were also prepared for comparison. Cohesion of the coatings was studied by four independent mechanical tests using different loading modes, namely tensile adhesion/cohesion test, cavitation test, conventional hardness test and instrumented indentation test. Results showed that interfaces between the dissimilar splats are not equivalent and that the coating strength greatly depends not only on the presence of the miniature TiO2 phase but also on the loading mode and involved interaction volume. When compared to the reference conventional coating deposited from Al2O3 powder, hybrid coatings were found to be less durable in adhesion/cohesion test but more durable in cavitation test and comparable in both hardness tests. Miniature TiO2 splats tended to be more strongly bonded to the above-laying Al2O3 splats than to the below-laying ones as large Al2O3 droplets possess greater ability to partially remelt previously deposited TiO2 than vice versa and even to form Al2TiO5 compound. Importance of splats deposition sequence and their remelting ability were confirmed also by the simplified analytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Bjorklund, S. Goel and S. Joshi, Function-Dependent Coating Architectures by Hybrid Powder-Suspension Plasma Spraying: Injector Design, Processing and Concept Validation, Mater. Des., 2018, 142, p 56–65.

    Article  Google Scholar 

  2. S.V. Joshi and G. Sivakumar, Hybrid Processing with Powders and Solutions: A Novel Approach to Deposit Composite Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1166–1186.

    Article  CAS  Google Scholar 

  3. S.V. Joshi, G. Sivakumar, T. Raghuveer and R.O. Dusane, Hybrid Plasma-Sprayed Thermal Barrier Coatings Using Powder and Solution Precursor Feedstock, J. Therm. Spray Technol., 2014, 23(4), p 616–624.

    Article  CAS  Google Scholar 

  4. A. Lohia, G. Sivakumar, M. Ramakrishna and S.V. Joshi, Deposition of Nanocomposite Coatings Employing a Hybrid APS + SPPS Technique, J. Therm. Spray Technol., 2014, 23(7), p 1054–1064.

    Article  CAS  Google Scholar 

  5. J.W. Murray, A. Leva, S. Joshi and T. Hussain, Microstructure and Wear Behaviour of Powder and Suspension Hybrid Al2O3–YSZ Coatings, Ceram. Int., 2018, 44(7), p 8498–8504.

    Article  CAS  Google Scholar 

  6. E.H. Jordan, C. Jiang and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations, J. Therm. Spray Technol., 2015, 24(7), p 1153–1165.

    Article  CAS  Google Scholar 

  7. G. Mauer, R. Vassen and D. Stover, Comparison and Applications of DPV-2000 and Accuraspray-G3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414–424.

    Article  CAS  Google Scholar 

  8. O. Marchand, L. Girardot, M.P. Planche, P. Bertrand, Y. Bailly and G. Bertrand, An Insight into Suspension Plasma Spray: Injection of the Suspension and Its Interaction with the Plasma Flow, J. Therm. Spray Technol., 2011, 20(6), p 1310–1320.

    Article  CAS  Google Scholar 

  9. G. Sivakumar, S. Banerjee, V.S. Raja and S.V. Joshi, Hot Corrosion Behavior of Plasma Sprayed Powder-Solution Precursor Hybrid Thermal Barrier Coatings, Surf. Coatings Technol., 2018, 349, p 452–461.

    Article  CAS  Google Scholar 

  10. S. Mahade, S. Bjorklund, S. Govindarajan, M. Olsson and S. Joshi, Novel Wear Resistant Carbide-Laden Coatings Deposited by Powder-Suspension Hybrid Plasma Spray: Characterization and Testing, Surf. Coatings Technol., 2020, 399, p 126147.

    Article  CAS  Google Scholar 

  11. M. Mistri, S. Joshi, K.K. Kar and K. Balani, Tribomechanical Insight into Carbide-Laden Hybrid Suspension-Powder Plasma-Sprayed Tribaloy T400 Composite Coatings, Surf. Coatings Technol., 2020, 396, p 125957.

    Article  CAS  Google Scholar 

  12. G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean, S. Valette, C. Chazelas, E. Meillot and L. Bianchi, Tribology of NiCrAlY+Al2O3 Composite Coatings by Plasma Spraying with Hybrid Feeding of Dry Powder+suspension, Wear, 2015, 344–345, p 69–85.

    Article  CAS  Google Scholar 

  13. G. Bolelli, A. Candeli, L. Lusvarghi, T. Manfredini, A. Denoirjean, S. Valette, A. Ravaux and E. Meillot, “Hybrid” Plasma Spraying of NiCrAlY+Al2O3+h-BN Composite Coatings for Sliding Wear Applications, Wear, 2017, 378–379, p 68–81.

    Article  CAS  Google Scholar 

  14. V. Gopal, S. Goel, G. Manivasagam and S. Joshi, Performance of Hybrid Powder-Suspension Axial Plasma Sprayed Al2O3-YSZ Coatings in Bovine Serum Solution, Materials, 2019, 12(12), p 18.

    Article  CAS  Google Scholar 

  15. J. Kiilakoski, J. Puranen, E. Heinonen, H. Koivuluoto and P. Vuoristo, Characterization of Powder-Precursor HVOF-Sprayed Al2O3 -YSZ/ZrO2 Coatings, J. Therm. Spray Technol., 2019, 28(1–2), p 98–107.

    Article  CAS  Google Scholar 

  16. G.-J. Yang, C.-X. Li, S. Hao, Y.-Z. Xing, E.-J. Yang and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation during Plasma Spraying of Ceramic Materials, Surf. Coatings Technol., 2013, 235, p 841–847.

    Article  CAS  Google Scholar 

  17. L. Li, X.Y. Wang, G. Wei, A. Vaidya, H. Zhang and S. Sampath, Substrate Melting during Thermal Spray Splat Quenching, Thin Solid Films, 2004, 468(1–2), p 113–119.

    Article  CAS  Google Scholar 

  18. S. Chandra and P. Fauchais, Formation of Solid Splats during Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148–180.

    Article  CAS  Google Scholar 

  19. C.-J. Li, C.-X. Li, G.-J. Yang and Y.-Y. Wang, Examination of Substrate Surface Melting-Induced Splashing during Splat Formation in Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 717–724.

    Article  CAS  Google Scholar 

  20. R.K. Shukla and A. Kumar, Substrate Melting and Re-Solidification During Impact of High-Melting Point Droplet Material, J. Therm. Spray Technol., 2015, 24(8), p 1368–1376.

    Article  Google Scholar 

  21. S.-W. Yao, C.-J. Li, J.-J. Tian, G.-J. Yang and C.-X. Li, Conditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate after High-Speed Impact, Acta Mater., 2016, 119, p 9–25.

    Article  CAS  Google Scholar 

  22. S.-W. Yao, J.-J. Tian, C.-J. Li, G.-J. Yang and C.-X. Li, Understanding the Formation of Limited Interlamellar Bonding in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Temperature, J. Therm. Spray Technol., 2016, 25(8), p 1617–1630.

    Article  CAS  Google Scholar 

  23. M. Michalak, L. Łatka, P. Sokołowski, A. Niemiec and A. Ambroziak, The Microstructure and Selected Mechanical Properties of Al2O3 + 13 Wt % TiO2 Plasma Sprayed Coatings, Coatings, 2020, 10(2), p 16.

    Article  CAS  Google Scholar 

  24. M. Michalak, F.-L. Toma, L. Latka, P. Sokolowski, M. Barbosa and A. Ambroziak, A Study on the Microstructural Characterization and Phase Compositions of Thermally Sprayed Al2O3-TiO2 Coatings Obtained from Powders and Water-Based Suspensions, Materials, 2020, 13(11), p 2638.

    Article  CAS  Google Scholar 

  25. L.-M. Berger, K. Sempf, Y.J. Sohn and R. Vassen, Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings, J. Therm. Spray Technol., 2018, 27(4), p 654–666.

    Article  CAS  Google Scholar 

  26. M. Vicent, E. Bannier, P. Carpio, E. Rayon, R. Benavente, M.D. Salvador and E. Sanchez, Effect of the Initial Particle Size Distribution on the Properties of Suspension Plasma Sprayed Al2O3-TiO2 Coatings, Surf. Coatings Technol., 2015, 268, p 209–215.

    Article  CAS  Google Scholar 

  27. L. Łatka, M. Michalak, M. Szala, M. Walczak, P. Sokołowski and A. Ambroziak, Influence of 13 Wt% TiO2 Content in Alumina-Titania Powders on Microstructure, Sliding Wear and Cavitation Erosion Resistance of APS Sprayed Coatings, Surf. Coatings Technol., 2021, 410, p 1269.

    Article  CAS  Google Scholar 

  28. G. Darut, E. Klyatskina, S. Valette, P. Carles, A. Denoirjean, G. Montavon, H. Ageorges, F. Segovia and M. Salvador, Architecture and Phases Composition of Suspension Plasma Sprayed Alumina-Titania Sub-Micrometer-Sized Coatings, Mater. Lett., 2012, 67(1), p 241–244.

    Article  CAS  Google Scholar 

  29. E. Bannier, M. Vicent, E. Rayón, R. Benavente, M.D. Salvador and E. Sánchez, Effect of TiO2 Addition on the Microstructure and Nanomechanical Properties of Al2O3 Suspension Plasma Sprayed Coatings, Appl. Surf. Sci., 2014, 316, p 141–146.

    Article  CAS  Google Scholar 

  30. T. Tesar, R. Musalek, F. Lukac, J. Medricky, J. Cizek, V. Rimal, S. Joshi and T. Chraska, Increasing α-Phase Content of Alumina-Chromia Coatings Deposited by Suspension Plasma Spraying Using Hybrid and Intermixed Concepts, Surf. Coatings Technol., 2019, 371, p 298–311.

    Article  CAS  Google Scholar 

  31. R. Musalek, J. Medricky, T. Tesar, J. Kotlan, Z. Pala, F. Lukac, K. Illkova, M. Hlina, T. Chraska, P. Sokolowski and N. Curry, Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates, J. Therm. Spray Technol., 2017, 26(8), p 1787–1803.

    Article  CAS  Google Scholar 

  32. R. Musalek, G. Bertolissi, J. Medricky, J. Kotlan, Z. Pala and N. Curry, Feasibility of Suspension Spraying of Yttria-Stabilized Zirconia with Water-Stabilized Plasma Torch, Surf. Coatings Technol., 2015, 268, p 58–62.

    Article  CAS  Google Scholar 

  33. ASTM C633 - 13(2017) Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, ASTM International, (2017)

  34. ASTM G32 - 16 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, (2016)

  35. R. Musalek, E. Nardozza, T. Tesar, and J. Medricky, Evaluation of Internal Cohesion of Multiphase Plasma-Sprayed Coatings by Cavitation Test: Feasibility Study, in Acta Polytech. CTU Proc., p 73–78 (2020)

  36. ISO 14577-1:2015 Metallic Materials — Instrumented Indentation Test for Hardness and Materials Parameters — Part 1: Test Method, p. 46 (2015)

  37. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20.

    Article  CAS  Google Scholar 

  38. W.H. Gitzen, Alumina as a Ceramic Material, American Ceramic Society, p. 264 (1970)

  39. P. Ctibor, V. Stengl, I. Pis, T. Zahoranova and V. Nehasil, Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Relations among Stoichiometry, Surface State and Photocatalytic Decomposition of Acetone, Ceram. Int., 2012, 38(4), p 3453–3458.

    Article  CAS  Google Scholar 

  40. F.-L. Toma, L.-M. Berger, C.C. Stahr, T. Naumann and S. Langner, Microstructures and Functional Properties of Suspension-Sprayed Al2O3 and TiO2 Coatings: An Overview, J. Therm. Spray Technol., 2010, 19(1–2), p 262–274.

    Article  CAS  Google Scholar 

  41. J.R. Colmenares-Angulo, V. Cannillo, L. Lusvarghi, A. Sola and S. Sampath, Role of Process Type and Process Conditions on Phase Content and Physical Properties of Thermal Sprayed TiO2 Coatings, J. Mater. Sci., 2009, 44(9), p 2276–2287.

    Article  CAS  Google Scholar 

  42. H. Kassner, R. Vassen and D. Stover, Study on Instant Droplet and Particle Stages during Suspension Plasma Spraying (SPS), Surf. Coatings Technol., 2008, 202(18), p 4355–4361.

    Article  CAS  Google Scholar 

  43. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coatings Technol., 2009, 203(19), p 2807–2829.

    Article  CAS  Google Scholar 

  44. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49–66.

    Article  CAS  Google Scholar 

  45. R. Musalek, T. Tesar, J. Medricky, F. Lukac, T. Chraska and M. Gupta, Microstructures and Thermal Cycling Properties of Thermal Barrier Coatings Deposited by Hybrid Water-Stabilized Plasma Torch, J. Therm. Spray Technol., 2020, 29(3), p 444–461.

    Article  CAS  Google Scholar 

  46. P. Chraska, J. Dubsky, K. Neufuss and J. Pisacka, Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol., 1997, 6(3), p 320–326.

    Article  CAS  Google Scholar 

  47. C.C. Stahr, S. Saaro, L.-M. Berger, J. Dubsky, K. Neufuss and M. Herrmann, Dependence of the Stabilization of α-Alumina on the Spray Process, J. Therm. Spray Technol., 2007, 16(5–6), p 822–830.

    Article  CAS  Google Scholar 

  48. R. Musalek, V. Pejchal, M. Vilemova and J. Matejicek, Multiple-Approach Evaluation of WSP Coatings Adhesion/Cohesion Strength, J. Therm. Spray Technol., 2012, 22(2–3), p 221–232.

    Google Scholar 

  49. R. Musalek, J. Matejicek, M. Vilemova and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1), p 422–428.

    Article  CAS  Google Scholar 

  50. J. Nohava, R. Musalek, J. Matejicek and M. Vilemova, A Contribution to Understanding the Results of Instrumented Indentation on Thermal Spray Coatings — Case Study on Al2O3 and Stainless Steel, Surf. Coatings Technol., 2014, 240, p 243–249.

    Article  CAS  Google Scholar 

  51. L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle and P. Fauchais, Splat Formation and Cooling of Plasma-Sprayed Zirconia, Thin Solid Films, 1997, 305(1–2), p 35–47.

    Article  CAS  Google Scholar 

  52. N.M. Rendtorff, G. Suarez and E.F. Aglietti, Non Isothermal Kinetic Study of the Aluminium Titanate Formation in Alumina-Titania Mixtures, Ceramica, 2014, 60(355), p 411–416.

    Article  Google Scholar 

  53. S. Goutier, M. Vardelle and P. Fauchais, Understanding of Spray Coating Adhesion through the Formation of a Single Lamella, J. Therm. Spray Technol., 2012, 21(3–4), p 522–530.

    Article  CAS  Google Scholar 

  54. A.T.T. Tran, M.M. Hyland, K. Shinoda and S. Sampath, Influence of Substrate Surface Conditions on the Deposition and Spreading of Molten Droplets, Thin Solid Films, 2011, 519(8), p 2445–2456.

    Article  CAS  Google Scholar 

  55. J. Wang, X.-T. Luo, C.-J. Li, N. Ma and M. Takahashi, Effect of Substrate Temperature on the Microstructure and Interface Bonding Formation of Plasma Sprayed Ni20Cr Splat, Surf. Coatings Technol., 2019, 371, p 36–46.

    Article  CAS  Google Scholar 

  56. M. Driouche, T. Rezoug, and M. El-Ganaoui, Effect of Droplet Initial Temperature on Substrate Melting and Its Re-Solidification in Plasma Spray Process, 2020, Lecture notes in Mechanical Engineering, p 129-132

  57. S. Oukach, H. Hamdi, M. El Ganaoui and B. Pateyron, Numerical Study of the Spreading and Solidification of a Molten Particle Impacting onto a Rigid Substrate under Plasma Spraying Conditions, Therm. Sci., 2015, 19(1), p 277–284.

    Article  Google Scholar 

  58. C.-W. Kang, J.K. Tan, L. Pan, C.Y. Low and A. Jaffar, Numerical and Experimental Investigations of Splat Geometric Characteristics during Oblique Impact of Plasma Spraying, Appl. Surf. Sci., 2011, 257(24), p 10363–10372.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support through project 19-10246S “Deposition mechanism and properties of multiphase plasma sprayed coatings prepared with liquid feedstocks” funded by Czech Science Foundation is gratefully acknowledged. Experiments with instrumented indentation were supported by project CZ.02.1.01/0.0/0.0/16_019/0000778 “Centre of Advanced Applied Sciences” funded by European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Musalek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musalek, R., Tesar, T., Dudik, J. et al. Cohesion of Dissimilar Splats in Hybrid Plasma-Sprayed Coatings: A Case Study for Al2O3-TiO2. J Therm Spray Tech 31, 1869–1888 (2022). https://doi.org/10.1007/s11666-022-01401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01401-4

Keywords

Navigation