Skip to main content

Advertisement

Log in

Influence of Thermal Treatment on Microstructure and Corrosion Behavior of Amorphous Fe40Ni40B12Si8 Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural evolution of thermally treated melt-quenched amorphous Fe40Ni40B12Si8 alloy was studied in terms of its influence on corrosion behavior of the alloy. Alloy structure was transformed gradually from purely amorphous and chemically homogeneous to fully crystalline, yielding γ-(Fe,Ni), Ni31Si12 and (Fe,Ni)2B phases as the final products. Corrosion study of the alloy in amorphous, partially crystalline as well as fully crystalline form, performed by electrochemical measurements in 0.5 M NaCl, together with the morphology examination, revealed that the microstructure and phase composition are crucial factors determining the corrosion resistance of the alloy in corrosive environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Suryanarayana, and A. Inoue: Int. Mater. Rev, 2013, vol. 58, pp. 131–66.

    CAS  Google Scholar 

  2. J. Long, M. McHenry, D.P. Urciuoli, V. Keylin, J. Huth, and T.E. Salem: J. Appl. Phys, 2008, vol. 103, pp. 07E705.

    Google Scholar 

  3. Y. Li, X. Jia, W. Zhang, C. Fang, X. Wang, F. Qin, S. Yamaura, and Y. Yokoyama: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2393-8.

    Google Scholar 

  4. R. Hasegawa: J. Non-Cryst. Solids, 2001, vol. 287, pp. 405–12.

    CAS  Google Scholar 

  5. J.L. Cheng, G. Chen, H.W. Xu, F. Xu, and Y.L. Du: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2620-4.

    Google Scholar 

  6. K. Han, Y. Wang, J. Qiang, H. Jiang, and L. Gu: J. Non-Cryst. Solids, 2019, vol. 520, pp. 119442.

    CAS  Google Scholar 

  7. Z. Śniadecki: Metall. Mater. Trans. A, 2020, vol. 51, pp. 4777-85.

    Google Scholar 

  8. X. Zhang, J. Liu, J. Li, C. Li, and Z. Yuan: Appl. Phys. A-Mater, 2020, vol. 126, pp. 291.

    CAS  Google Scholar 

  9. P.C. Zhang, J. Chang, and H.P. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 327-37.

    Google Scholar 

  10. A. Inoue, T. Zhang, T. Itoi, and A. Takeuchi: Mater. Trans, 1997, vol. 38, pp. 359-62.

    CAS  Google Scholar 

  11. M. Veligatla, S. Katakam, S. Das, N. Dahotre, R. Gopalan, D. Prabhu, D.A. Babu, H. Choi-Yim, and S. Mukherjee: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1019-23.

    Google Scholar 

  12. T. Gunes: Metall. Mater. Trans. A, 2019, vol. 50, pp. 4480-91.

    CAS  Google Scholar 

  13. D.A. Givan: Dent. Clin. N. Am, 2007, vol. 51, pp. 591–601.

    Google Scholar 

  14. M. Stern, and H. Wissenberg: J. Electrochem. Soc, 1959, vol. 106, pp. 759-64.

    CAS  Google Scholar 

  15. Z.L. Long, C.T. Chang, Y.H. Ding, Y. Shao, P. Zhang, B.L. Shen, and A. Inoue: J. Non-Cryst. Solids, 2008, vol. 354, pp. 4609-13.

    CAS  Google Scholar 

  16. A. Mitra, V. Rao, S. Pramanik, and O.N. Mohanty: J. Mater. Sci, 1992, vol. 27, pp. 5863-8.

    CAS  Google Scholar 

  17. Q. Li: Mater. Lett, 2006, vol. 60, pp. 3113-7.

    CAS  Google Scholar 

  18. H. Gleiter: Prog. Mater. Sci, 1989, vol. 33, pp. 223–315.

    CAS  Google Scholar 

  19. S.W. Du, and R.V. Ramanujan: J. Non-Cryst. Solids, 2005, vol. 351, pp. 3105–13.

    CAS  Google Scholar 

  20. J.B. Cheng, X.B. Liang, and B.S. Xu: J. Therm. Spray Techn, 2014, vol. 23, pp. 373-9.

    Google Scholar 

  21. Y. Yang, C. Zhang, Y. Peng, Y. Yu, and L. Liu: Corros. Sci, 2012, vol. 59, pp. 10-9.

    CAS  Google Scholar 

  22. D.D. Coimbrao, G. Zepon, G.Y. Koga, D.A.G. Perez, F.H.P. Almeida, V. Roche, J.C. Lepretre, A.M. Jorge, C.S. Kiminami, C. Bolfarini, A. Inoue, and W.J. Botta: J. Alloy Compd, 2020, vol. 826, pp. 154123.

    CAS  Google Scholar 

  23. A. Gavrilović, L.D. Rafailović, W. Artner, J. Wosik, and A.H. Whitehead: Corros. Sci, 2011, vol. 53, pp. 2400-5.

    Google Scholar 

  24. A. Baron, D. Szewieczek, and G. Nawrat: Electrochim. Acta, 2007, vol. 52, pp. 5690-5.

    CAS  Google Scholar 

  25. R. Wang, and M.D. Merz: Corrosion, 1984, vol. 40, pp. 272-80.

    CAS  Google Scholar 

  26. K. Peng, Y. Tang, L. Zhou, J. Tang, F. Xu, and Y. Du: Physica B, 2005, vol. 366, pp. 110-5.

    CAS  Google Scholar 

  27. L. Zaluski, A. Zaluska, M. Kopcewicz, and R. Schulz: J. Mater. Res, 1991, vol. 6, pp. 1028-34.

    CAS  Google Scholar 

  28. M. Kopcewicz, E. Jackiewicz, L. Zaluski, and A. Zaluska: J. Appl. Phys, 1992, vol. 71, pp. 3997-4008.

    CAS  Google Scholar 

  29. V. Zhukova, J.M. Blanco, M. Ipatov, and A. Zhukov: J. Appl. Phys, 2014, vol. 115, pp. 17A309.

    Google Scholar 

  30. C. Chang, B. Shen, and A. Inoue: Appl. Phys. Lett, 2006, vol. 89, pp. 051912.

    Google Scholar 

  31. L. Zhang, X.H. Ma, Q. Li, J. Zhang, Y. Dong, and C. Chang: J. Alloy Compd, 2014, vol. 608, pp. 79-84.

    CAS  Google Scholar 

  32. P. Patsalas, A. Lekatou, E. Pavlidou, S. Foulias, M. Kamaratos, G.A. Evangelakis, and A.R. Yavari: J. Alloy Compd, 2007, vol. 434–5, pp. 229–33.

    Google Scholar 

  33. A. Sagasti, V. Palomares, J.M. Porro, I. Orue, M.B.S. Ilarduya, A.C. Lopes, and J. Gutierrez: Materials, 2020, vol. 13, pp. 57.

    CAS  Google Scholar 

  34. http://www.crystallography.net. Accessed 24 June 2011 and 06 March 2017.

  35. ICSD Inorganic Crystals Structure Database, Release 2014/2, FIZ Karlsruhe, Eggenstein-Leopoldshafen, Germany.

  36. L. Lutterotti: Nucl. Instrum. Meth. B, 2010, vol. 268, pp. 334–40.

    CAS  Google Scholar 

  37. A. Zaluska, and H. Matyja: Mat. Sci. Eng, 1988, vol. 97, pp. 347–50.

    CAS  Google Scholar 

  38. T. Komatsu, and K. Matusita: J. Mater. Sci, 1986, vol. 21, pp. 1693-99.

    CAS  Google Scholar 

  39. G.K. Williamson, and W.H. Hall: Acta Metall, 1953, vol. 1, pp. 22–31.

    CAS  Google Scholar 

  40. P.L. Allen, and A. Hickling: Trans. Faraday Soc, 1957, vol. 53, pp. 1626–35.

    CAS  Google Scholar 

  41. V. Kublanovsky, O. Bersirova, A. Dikusar, Z. Bobanova, H. Cesiulis, J. Sinkeviciute, and I. Prosycevas: Physico-Chem. Mech. Mater, 2008, pp. 308–14.

  42. P.R. Roberge: Corrosion engineering principles and practice, McGraw-Hill, New York, 2008.

    Google Scholar 

  43. L. Yang and K.T. Chiang: On-line and real-time corrosion monitoring techniques of metals and alloys in nuclear power plants and laboratories. In: P.G. Tipping (Ed.), Understanding and Mitigating Ageing in Nuclear Power Plants. Oxford: Woodhead Publishing, 2010, pp. 417-55.

    Google Scholar 

  44. W. Cheng, S. Luo and Y. Chen: Int. J. Electrochem. Sci, 2019, vol. 14, pp. 4254-63.

    CAS  Google Scholar 

  45. A. Inoue, T. Masumoto, and H. Kimura: Sci. Rep. Res. Inst. Tohoku Univ, 1979, vol. A27, pp. 159-71.

    Google Scholar 

  46. T. Kulik: J. Non-Cryst. Solids, 2001, vol. 287, pp. 145-61.

    CAS  Google Scholar 

  47. T. Kemeny, I. Vincze, B. Fogarassy, and S. Arajs: Phys. Rev. B, 1979, vol. 20, pp. 476-88.

    CAS  Google Scholar 

  48. V.V. Molokanov, T.N. Mikhailova, I.A. Kliger, and M.I. Petrzhik: Mat. Sci. Eng. A, 1997, vol. 226-8, pp. 474-8.

    Google Scholar 

  49. V.S. Raja, and K.S. Ranganathan: J. Mater. Sci, 1990, vol. 25, pp. 4667–77.

    CAS  Google Scholar 

  50. T. Pradell, J.J. Suñol, N. Clavaguera, and M.T. Clavaguera-Mora: J. Non-Cryst. Solids, 2000, vol. 276, pp. 113–21.

    CAS  Google Scholar 

  51. M.M. Vasić, V.A. Blagojević, N.N. Begović, T. Žák, V.B. Pavlović, and D.M. Minć: Thermochim. Acta, 2015, vol. 614, pp. 129–36.

    Google Scholar 

  52. A.D. Romig, and J.I. Goldstein: Metall. Trans. A, 1980, vol. 11A, pp. 1151–9.

    CAS  Google Scholar 

  53. B. Shen, Y. Zhou, C. Chang, and A. Inoue: J. Appl. Phys, 2007, vol. 101, pp. 09N101.

    Google Scholar 

  54. M.V. Gorshenkov, A.M. Glezer, O.A. Korchuganova, A.A. Aleev, and N.A. Shurygina: Phys. Met. Metallogr, 2017, vol. 118, pp. 176–82.

    CAS  Google Scholar 

  55. K. Oikawa, R. Saito, K. Kobayashi, J. Yaokawa, and K. Anzai: Mater. Trans, 2007, vol. 48, pp. 2259–62.

    CAS  Google Scholar 

  56. J. Zhang, and F. Guyot: Phys. Chem. Minerals, 1999, vol. 26, pp. 419–24.

    CAS  Google Scholar 

  57. N. Sato, Basics of Corrosion Chemistry, in: S.K. Sharma (Ed.), Green Corrosion Chemistry and Engineering: Opportunities and Challenges, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012.

    Google Scholar 

  58. K. Jiang, J. Li, and J. Liu: RSC Adv, 2014, vol. 4, pp. 36245–52.

    CAS  Google Scholar 

  59. S. Wang, Corrosion resistance and electrocatalytic properties of metallic glasses. In: B. Movahedi (Ed.), Metallic Glasses – Formation and Properties. IntechOpen, Vienna, 2016, pp. 63-96.

    Google Scholar 

  60. N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sort, E. Pellicer, and E.J. Podlaha-Murphy: Surf. Eng. Appl. Elect, 2012, vol. 48, pp. 491-520.

    Google Scholar 

  61. K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri: Mat. Sci. Eng. A, 2007, vol. 460–1, pp. 39–45.

    Google Scholar 

  62. C. Han, Y.H. Wei, H.F. Zhang, Z.W. Zhu, and J. Li: Acta Metall. Sin. Engl, 2019, vol. 32, pp. 1421-36.

    CAS  Google Scholar 

  63. H.C. Kuo, and D. Landolt: Electrochim. Acta, 1975, vol. 20, pp. 393-9.

    CAS  Google Scholar 

  64. I.B. Singh, R.S. Chaudhary, and T.K.G. Namboodhiri: Mat. Sci. Eng, 1986, vol. 83, pp. 123-33.

    CAS  Google Scholar 

  65. C. Yu, S. Zhu, D. Wei, and F. Wang: Surf. Coat. Tech, 2007, vol. 201, pp. 7530–7.

    CAS  Google Scholar 

  66. N. Sukidi, C.C. Koch, and C.T. Liu: Mat. Sci. Eng. A, 1995, vol. 191, pp. 223-31.

    Google Scholar 

  67. B. Ahmmad, K. Leonard, M.S. Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, and Y. Kuroda: Adv. Powder Technol, 2013, vol. 24, pp. 160-7.

    CAS  Google Scholar 

  68. F. Zhang, Y. Shi, T. Xue, J. Zhang, Y. Liang, and B. Zhang: Sci. China Mater, 2017, vol. 60, pp. 324-34.

    CAS  Google Scholar 

  69. L. Babouri, K. Belmokre, A. Kabir, A. Abdelouas, and Y.E. Mendili: J. Chem. Pharm. Res, 2015, vol. 7, pp. 1175-86.

    CAS  Google Scholar 

  70. C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H.J. Fan, and C. Yang: Energy Environ. Sci, 2020, vol. 13, pp. 86-95.

    CAS  Google Scholar 

  71. M. Gong, and H. Dai: Nano Res. 2015, vol. 8, pp. 23-39.

    CAS  Google Scholar 

  72. S. Valeri, U.D. Pennino, P. Lomellini, and P. Sassaroli: Surf. Sci, 1984, vol. 145, pp. 371-89.

    CAS  Google Scholar 

  73. L. Klein, Y. Shen, M.S. Killian, and S. Virtanen: Corros. Sci, 2011, vol. 53, pp. 2713-20.

    CAS  Google Scholar 

  74. X. Fu, A. Wang, and M.J. Krawczynski: J. Geophys. Res. Planets, 2017, vol. 122, pp. 839-55.

    CAS  Google Scholar 

  75. Y. Yi, P. Zhang, Z. Qin, C. Yu, W. Li, Q. Qin, B. Li, M. Fan, X. Liang, and L. Dong: RSC Adv, 2018, vol. 8, pp. 7110-22.

    CAS  Google Scholar 

  76. Y. Zou, Z. Zhang, S. Liu, D. Chen, G. Wang, Y. Wang, M. Zhang, and Y. Chen: J. Electrochem. Soc, 2015, vol. 162, pp. C64-70.

    CAS  Google Scholar 

  77. R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu: Corros. Sci, 2011, vol. 53, pp. 2351-6.

    CAS  Google Scholar 

  78. C.S. Widodo, H. Sela, and D.R. Santosa: AIP Conference Proceedings, 2018, vol. 2021, pp. 050003.

    Google Scholar 

  79. A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer, New York, 2014.

    Google Scholar 

  80. K.C. Kumar, B.V.A. Rao, S.S. Rao, and K.V. Kumar: New J. Chem, 2017, vol. 41, pp. 11155-69.

    Google Scholar 

  81. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, and P. Fino: Electrochim. Acta, 2016, vol. 206, pp. 346-55.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200146) and by the Ministry of Education, Youth and Sports of the Czech Republic under the projects CEITEC 2020 (LQ1601), and m-IPMinfra (CZ.02.1.01/0.0/0.0/16_013/0001823). The authors would like to thank Ing. Pavla Roupcová, PhD (Institute of Physics of Materials AS CR, Brno, Czech Republic) for performing XRD measurements and Dr. Danica Bajuk Bogdanović (Faculty of Physical Chemistry, University of Belgrade, Serbia) for recording Raman spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica M. Vasić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submiited May 4, 2020; accepted October 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasić, M.M., Žák, T., Pizúrová, N. et al. Influence of Thermal Treatment on Microstructure and Corrosion Behavior of Amorphous Fe40Ni40B12Si8 Alloy. Metall Mater Trans A 52, 34–45 (2021). https://doi.org/10.1007/s11661-020-06079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06079-3

Navigation