Skip to main content
Log in

Microplastics in the environment: their sources, distribution, and dangerous status

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the importance of environmental pollution caused by microplastics and their high risks for the organisms living in water and soil ecosystems. Microplastics are one of the emerging contaminants which have been widely spread in soil and aquatic environments. In the last few years, many studies have been focused on their distribution and assessment of their adverse risk to the organisms living in both ecosystems. New methods for the identification of these small particles are also distinguished; however, these techniques are not adequate and sufficient for detection, toxicity, and impacts of their effects on biota. The evidence of large burden of microplastics in aquatic ecosystems has substantially increased. But we are at the beginning of understanding of the potential risk of these materials in soil, where it is still entirely unclear what the size of this problem is. Up to now, little information is present about the effects of these particles on soil organisms. Better understanding to the occurrence, spread, and negative influence of these particles in the ecosystems is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akdogan, Z., & Guven, B. (2019). Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental Pollution, 254, 113011.

    Article  CAS  Google Scholar 

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.

    Article  CAS  Google Scholar 

  • Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastic. Philosophical Transactions of the Royal Society of London. Series B, 364, 1977–1984.

    Article  CAS  Google Scholar 

  • Au, S. Y., Lee, C. M., Weinstein, J. E., van den Hurk, P., & Klaine, S. J. (2017). Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs. Integrated Environmental Assessment and Management, 3, 505–509.

    Article  Google Scholar 

  • Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Environmental accumulation and fragmentation of plastic debris in global. Philosophical Transactions of the Royal Society of London. Series B, 364, 1985–1998.

    Article  CAS  Google Scholar 

  • Batel, A., Linti, F., Scherer, M., Erdinger, L., & Braunbeck, T. (2016). Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35, 1656–1666.

    Article  CAS  Google Scholar 

  • Belzagui, F., Buscio, V., Gutíerrez-Bouzán, C., & Vilaseca, M. (2021). Cigarette butts as a microfiber source with a microplastic level of concern. Science of the Total Environment, 762, 144165.

    Article  CAS  Google Scholar 

  • Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environmental Science and Technology, 47, 593–600.

    Article  CAS  Google Scholar 

  • Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of the Total Environment, 612, 422–435.

    Article  CAS  Google Scholar 

  • Botterell, Z. L., Beaumont, N., Cole, M., Hopkins, F. E., Steinke, M., Thompson, R. C., & Lindeque, P. K. (2020). Bioavailability of microplastics to marine zooplankton: Effect of shape and infochemicals. Environmental Science and Technology, 54, 12024–12033.

    Article  CAS  Google Scholar 

  • Brandts, I., Teles, M., Gonçalves, A. P., Barreto, A., Franco-Martinez, L., Tvarijonaviciute, A., Martins, M. A., Soares, A. M. V. M., Tort, L., & Oliveira, M. (2018). Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Science of the Total Environment, 643, 775–784.

  • Bridson, J. H., Gaugler, E. C., Smith, D. A., Northcott, G. L., & Gaw, S. (2021). Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. Journal of Hazardous Materials, 414, 125571.

    Article  CAS  Google Scholar 

  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E. L., Tonkin, A., Galloway, T., & Thompson, R. C. (2011). Accumulations of microplastic on shorelines worldwide: Sources and sinks. Environmental Science and Technology, 45, 9175–9179.

    Article  CAS  Google Scholar 

  • Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science and Technology, 42, 5026–5031.

    Article  CAS  Google Scholar 

  • Cai, H., Du, F., Li, L., Li, B., Li, J., & Shi, H. (2019). A practical approach based on FT-IR spectroscopy for identification of semi-synthetic and natural celluloses in microplastic investigation. Science of the Total Environment, 669, 692–701.

    Article  CAS  Google Scholar 

  • Capolupo, M., Sørensen, L., Jayasena, K. D. R., Booth, A. M., & Fabbri, E. (2020). Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Research, 169, 115270.

    Article  CAS  Google Scholar 

  • Chen, H., Jia, Q., Zhao, X., Li, L., Nie, Y., Liu, H., & Ye, J. (2020). The occurrence of microplastics in water bodies in urban agglomerations: Impacts of drainage system overflow in wet weather, catchment land-uses, and environmental management practices. Water Research, 183, 116073.

    Article  CAS  Google Scholar 

  • Chua, E. M., Shimeta, J., Nugegoda, D., Morrison, P. D., & Clarke, B. O. (2014). Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes Compressa. Environmental Science and Technology, 48, 8127–8134.

    Article  CAS  Google Scholar 

  • Claessens, M., van Cauwenberghe, L., Vandegehuchte, M. B., & Janssen, C. R. (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 70, 227–233.

    Article  CAS  Google Scholar 

  • Coe, J. M., & Rogers, D. B. (1997). Marine debris: Sources, impacts, and solutions. Springer-Verlag.

    Book  Google Scholar 

  • Dekiff, J. H., Remy, D., Klasmeier, J., & Fries, E. (2014). Occurrence and spatial distribution of microplastics in sediments from Norderney. Environmental Pollution, 186, 248–256.

    Article  CAS  Google Scholar 

  • Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44, 842–852.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104, 290–293.

    Article  CAS  Google Scholar 

  • ECHA, (2018). Intentionally added microplastics in paints for consumer and professional use. https://echa.europa.eu/documents.

  • Engler, R. E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science and Technology, 46, 12302–12315.

    Article  CAS  Google Scholar 

  • Eriksen, M., Maximenkob, N., Thiel, M., Cumminsa, A., Lattin, G., Wilson, S., Hafner, J., Zellers, A., & Rifman, S. (2013). Plastic pollution in the South Pacific subtropical gyre. Marine Pollution Bulletin, 68, 71–76.

    Article  CAS  Google Scholar 

  • Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58, 1225–1228.

    Article  CAS  Google Scholar 

  • Fernández, B., & Albentosa, M. (2019). Insights into the uptake, elimination and accumulation of microplastics in mussel. Environmental Pollution, 249, 321–329.

    Article  CAS  Google Scholar 

  • Foekema, E. M., de Gruijter, C., Mergia, M. T., van Franeker, J. A., Murk, A. J., & Koelmans, A. A. (2013). Plastic in North Sea fish. Environmental Science and Technology, 47, 8818–8824.

    Article  CAS  Google Scholar 

  • Fonte, E., Ferreira, P., & Guilhermino, L. (2016). Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps): Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation. Aquatic Toxicology, 180, 173–185.

    Article  CAS  Google Scholar 

  • Frias, J. P. G. L., Sobral, P., & Ferreira, A. M. (2010). Organic pollutants in microplastics from two beaches of the Portuguese coast. Marine Pollution Bulletin, 60, 1988–1992.

    Article  CAS  Google Scholar 

  • Frydkjær, C. K., Iversen, N., & Roslev, P. (2017). Ingestion and egestion of microplastics by the cladoceran Daphnia magna: Effects of regular and irregular shaped plastic and sorbed phenanthrene. Bulletin of Environmental Contamination and Toxicology, 99, 655–661.

    Article  CAS  Google Scholar 

  • Fu, W., Min, J., Jiang, W., Li, Y., & Zhang, W. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science of the Total Environment, 721, 137561.

    Article  CAS  Google Scholar 

  • Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science and Technology, 50, 5774–5780.

    Article  CAS  Google Scholar 

  • Gaylor, M. O., Harvey, E., & Hale, R. C. (2013). Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils. Environmental Science and Technology, 47, 13831–13839.

    Article  CAS  Google Scholar 

  • Gouin, T., Roche, N., Lohmann, R., & Hodges, G. (2011). A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environmental Science and Technology, 45, 1466–1472.

    Article  CAS  Google Scholar 

  • Gregory, M. R. (1996). Plastic ‘scrubbers’ in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin, 32, 867–871.

    Article  CAS  Google Scholar 

  • Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142, 1–14.

    Article  CAS  Google Scholar 

  • Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., & Xing, B. (2012). Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environmental Science and Technology, 46, 7252–7259.

    Article  CAS  Google Scholar 

  • Hammer, J., Kraak, M. H. S., Parsons, J. R., & Whitacre, D. M. (2012). Plastics in the marine environment: The dark side of a modern gift. Reviews of Environmental Contamination and Toxicology, 220, 1–44.

    CAS  Google Scholar 

  • He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163–172.

  • Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science and Technology, 51, 4714–4721.

    Article  CAS  Google Scholar 

  • Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society of London. Series B, 364, 2115–2126.

    Article  CAS  Google Scholar 

  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

    Article  CAS  Google Scholar 

  • Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science and Technology, 50, 2685–2691.

    Article  CAS  Google Scholar 

  • Huertalwanga, E., Vega, J. M., Quej, V. K., de los Angeleschi, J., del Cid, L. S., Chi, C., Segura, G. E., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A. A., & Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7, 14071.

  • Hüffer, T., & Hofmann, T. (2016). Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214, 194–201.

    Article  CAS  Google Scholar 

  • Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10, 7391.

  • Ivar do Sul, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352–364.

    Article  CAS  Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347, 768–771.

    Article  CAS  Google Scholar 

  • Jiang, J. Q. (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13, 16–23.

    Article  Google Scholar 

  • Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobucar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838.

    Article  CAS  Google Scholar 

  • Jiang, Y., Yin, X., Xi, X., Guan, D., Sun, H., & Wang, N. (2021). Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. Water Research, 196, 117016.

    Article  CAS  Google Scholar 

  • Ju, H., Zhu, D., & Qiao, M. (2019). Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environmental Pollution, 247, 890–897.

    Article  CAS  Google Scholar 

  • Kashiwada, S. (2006). Distribution of nanoparticles in the see-through Medaka (Oryzias latipes). Environmental Health Perspectives, 114, 1697–1702.

    Article  CAS  Google Scholar 

  • Khan, F. R., Syberg, K., Shashoua, Y., & Bury, N. R. (2015). Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio). Environmental Pollution, 206, 73–79.

    Article  CAS  Google Scholar 

  • Kim, D., Chae, Y., & An, Y.-J. (2017). Mixture Toxicity of nickel and microplastics with different functional groups on Daphnia magna. Environmental Science and Technology, 51, 12852–12858.

    Article  CAS  Google Scholar 

  • Koelmans, A. A., Besseling, E., Wegner, A., & Foekema, E. M. (2013). Plastic as a carrier of POPs to aquatic organisms: A model analysis. Environmental Science and Technology, 47, 7812–7820.

    Article  CAS  Google Scholar 

  • Kokalj, A. J., Horvat, P., Skalar, T., & Kržan, A. (2018). Plastic bag and facial cleanser derived microplastic do not affect feeding behavior and energy reserves of terrestrial isopods. Science of the Total Environment, 615, 761–766.

    Article  CAS  Google Scholar 

  • Law, K. L., & Thompson, R. C. (2014). Microplastics in the seas. Science, 345, 144–145.

    Article  CAS  Google Scholar 

  • Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M., & Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100, 82–91.

    Article  CAS  Google Scholar 

  • Ma, Y., Huang, A., Cao, S., Sun, F., Wang, L., Guo, H., & Ji, R. (2016). Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environmental Pollution, 219, 166–173.

    Article  CAS  Google Scholar 

  • Magara, G., Elia, A.C., Syberg, K., Khan, F.R. (2018) Single contaminant and combined exposures of polyethylene microplastics and fluoranthene: Accumulation and oxidative stress response in the blue mussel, Mytilus edulis. Journal of Toxicology and Environmental Health Part A 1–13.

  • Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J., Voisin, A. (2016) Swedish sources and pathways for microplastics to the marine environment. Annual Report from IVL Swedish Environmental Research Institute, Number C 183, March 2016.

  • Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science and Technology, 35, 318–324.

    Article  CAS  Google Scholar 

  • Mendoza, L. M. R., & Jones, P. R. (2015). Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environmental Chemistry, 12, 611–617.

    Article  CAS  Google Scholar 

  • O’Donovan, S., Mestre, N. C., Abel, S., Fonseca, T. G., Carteny, C. C., Cormier, B., Keiter, S. H., & Bebianno, M. J. (2018). Ecotoxicological effects of chemical contaminants adsorbed to microplastics in the clam Scrobicularia plana. Frontiers in Marine Science, 5, 143.

    Article  Google Scholar 

  • Oliveira, M., Ribeiro, A., Hylland, K., & Guilhermino, L. (2013). Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecological Indicators, 34, 641–647.

    Article  CAS  Google Scholar 

  • Oz, N., Kadizade, O. N., & Yurtsever, M. (2019). Investigation of heavy metal adsorption on microplastics. Applied Ecology and Environmental Research, 17, 7301–7310.

    Article  Google Scholar 

  • Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., Frère, L., Cassone, A.-L., Sussarellu, R., Fabioux, C., Guyomarch, J., Albentosa, M., Huvet, A., & Soudant, P. (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216, 724–737.

    Article  CAS  Google Scholar 

  • Peng, J., Wang, J., & Cai, L. (2017). Current understanding of microplastics in the environment: Occurrence, fate, risks, and what we should do. Integrated Environmental Assessment and Management, 13, 476–482.

    Article  Google Scholar 

  • PlasticsEurope. (2019). Plastics-The Facts 2019. An analysis of European Plastics production, demand and waste data. EPRO PlasticsEurope.

    Google Scholar 

  • Roy, P. K., Hakkarainen, M., Varma, I. K., & Albertsson, A. C. (2011). Degradable polyethylene: Fantasy or reality. Environmental Science and Technology, 45, 4217–4227.

    Article  CAS  Google Scholar 

  • Qu, H., Ma, R., Wang, B., Zhang, Y., Yin, L., Yu, G., Deng, S., Huang, J., & Wang, Y. (2018). Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem. Journal of Hazardous Materials, 359, 104–112.

    Article  CAS  Google Scholar 

  • Rainieri, S., Conlledo, N., Larsen, B. K., Granby, K., & Barranco, A. (2018). Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environmental Research, 162, 135–143.

    Article  CAS  Google Scholar 

  • Rehse, S., Kloas, W., & Zarfl, C. (2018). Microplastics reduce short-term effects of environmental contaminants. Part I: Effects of Bisphenol A on freshwater zooplankton are lower in presence of polyamide particles. International Journal of Environmental Research and Public Health, 15, 280.

    Article  CAS  Google Scholar 

  • Rodríguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503.

    Article  CAS  Google Scholar 

  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26, 246–265.

    Article  CAS  Google Scholar 

  • Sleight, V. A., Bakir, A., Thompson, R. C., & Henry, T. B. (2017). Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish. Marine Pollution Bulletin, 116, 291–297.

    Article  CAS  Google Scholar 

  • Sun, Q., Ren, S.-Y., & Ni, H.-G. (2020). Incidence of microplastics in personal care products: An appreciable part of plastic pollution. Science of the Total Environment, 742, 140218.

    Article  CAS  Google Scholar 

  • Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental Science and Technology, 41, 7759–7764.

    Article  CAS  Google Scholar 

  • Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., et al. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London. Series B, 364, 2027–2045.

    Article  CAS  Google Scholar 

  • Von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science and Technology, 46, 11327–11335.

  • Wang, H. T., Ding, J., Xiong, C., Zhu, D., Li, G., Jia, X. Y., Zhu, Y. G., & Xue, X. M. (2019a). Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 251, 110–116.

    Article  CAS  Google Scholar 

  • Wang, J., Coffin, S., Sun, C., Schlenk, D., & Gan, J. (2019b). Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249, 776–784.

    Article  CAS  Google Scholar 

  • Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G., & Zhang, P. (2019c). Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment, 691, 848–857.

    Article  CAS  Google Scholar 

  • Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., & Koelmans, A. A. (2012). Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 31, 2490–2497.

    Article  CAS  Google Scholar 

  • Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., et al. (2019). Environmental occurrence, fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184, 109612.

    Article  CAS  Google Scholar 

  • Wu, X., Lyu, X., Li, Z., Gao, B., Zeng, X., Wu, J., & Sun, Y. (2020). Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Science of the Total Environment, 707, 136065.

    Article  CAS  Google Scholar 

  • Xu, S., Lehmann, R. G., Miller, J. R., & Chandra, G. (1998). Degradation of silicone polymer as influenced by clay minerals. Environmental Science and Technology, 32, 1199–1206.

    Article  CAS  Google Scholar 

  • Xu, B., Liu, F., Brookes, P. C., & Xu, J. (2018). Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environmental Pollution, 240, 87–94.

    Article  CAS  Google Scholar 

  • Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q., & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704, 135931.

    Article  CAS  Google Scholar 

  • Zhang, S., Yang, X., Gertsen, H., Peters, P., Salanki, T., & Geissen, V. (2018). A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 616, 1056–1065.

    Article  CAS  Google Scholar 

  • Zhao, L., Qu, M., Wong, G., & Wang, D. (2017). Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode Caenorhabditis elegans. Environmental Science: Nano, 4, 2356.

    CAS  Google Scholar 

  • Zhu, D., Chen, Q. L., An, X. L., Yang, X. R., Christie, P., Ke, X., Wu, L. H., & Zhu, Y. G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology & Biochemistry, 116, 302–310.

    Article  CAS  Google Scholar 

  • Zitko, V., & Hanlon, M. (1991). Another source of pollution by plastics: Skin cleans with plastic scrubbers. Marine Pollution Bulletin, 22, 41–42.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic-MEYS (projects No. LM2015075, EF16_013/0001782, and 8120001-EIG CONCERT JAPAN). This work has also been supported by Charles University (UNCE, Center of Excellence, program No. 204069; Cooperation Environmental and Sustainability Research, project No. 270022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud M. Ardestani.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardestani, M.M. Microplastics in the environment: their sources, distribution, and dangerous status. Water Air Soil Pollut 233, 161 (2022). https://doi.org/10.1007/s11270-022-05630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05630-9

Keywords

Navigation