Skip to main content
Log in

Complete genome sequence of Xanthomonas phage M29, a new member of Foxunavirus isolated in the Czech Republic

  • Brief Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The newly discovered Xanthomonas phage M29 (Xp M29) is the first lytic phage infecting Xanthomonas campestris pv. campestris (Xcc) that was isolated from cabbage leaves in the Czech Republic. The phage consists of icosahedral head approximately 60 nm in diameter and a probably contractile tail of 170 nm. The complete genome size was 42 891 bp, with a G + C content of 59.6%, and 69 ORFs were predicted on both strands. Pairwise nucleotide comparison showed the highest similarity with the recently described Xanthomonas phage FoX3 (91.2%). Bacteriophage Xp M29 has a narrow host range infecting 5 out of 21 isolates of Xcc. Xp M29 is a novel species in a newly formed genus Foxunavirus assigned directly to the class Caudoviricetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Data availability

The sequence is available in GenBank under the mentioned accession number.

References

  1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. CSO (2020) Table: area, per hectare yield and harvest of potatoes, vegetables, and strawberries, including households. Czech Statistical Office. https://vdb.czso.cz/vdbvo2/faces/en/index.jsf?page=vystup-objekt-vyhledavani&vyhltext=zelenina&bkvt=emVsZW5pbmE.&katalog=all&pvo=ZEM02L/. Accessed 24 Jan 2023

  3. Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18. https://doi.org/10.1111/j.1364-3703.2012.00833.x

    Article  CAS  PubMed  Google Scholar 

  4. Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111. https://doi.org/10.1094/PHYTO.2002.92.1.105

    Article  CAS  PubMed  Google Scholar 

  5. Gazdik F, Magnus S, Roberts SJ, Baranski R, Cechova J, Pokluda R, Eichmeier A, Grzebelus D, Baranek M (2021) Persistence of Xanthomonas campestris pv. campestris in field soil in Central Europe. Microorganisms 9:591. https://doi.org/10.3390/microorganisms9030591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones JB, Vallad GE, Iriarte FB, Obradovic A, Wernsing MH, Jackson LE, Balogh B, Hong JC, Momol MT (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2:e23857–e23857. https://doi.org/10.4161/bact.23857

    Article  Google Scholar 

  7. Gasic K, Kuzmanovic N, Ivanovic M, Prokic A, Sevic M, Obradovic A (2018) Complete genome of the Xanthomonas euvesicatoria specific bacteriophage K Phi 1: its survival and potential in control of pepper bacterial Spot. Front Microbiol 9:2021. https://doi.org/10.3389/fmicb.2018.02021

    Article  PubMed  PubMed Central  Google Scholar 

  8. Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954. https://doi.org/10.1094/PDIS.2003.87.8.949

    Article  CAS  PubMed  Google Scholar 

  9. Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 35:882–884. https://doi.org/10.21273/HORTSCI.35.5.882

    Article  Google Scholar 

  10. Obradovic A, Mavridis A, Rudolph K, Janse JD, Arsenijevic M, Jones JB, Minsavage GV, Wang JF (2004) Characterization and PCR-based typing of Xanthomonas campestris pv. vesicatoria from peppers and tomatoes in Serbia. Eur J Plant Pathol 110:285–292. https://doi.org/10.21273/HORTSCI.35.5.882

    Article  CAS  Google Scholar 

  11. Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91:871–878. https://doi.org/10.1094/PDIS-91-7-0871

    Article  CAS  PubMed  Google Scholar 

  12. Nga NTT, Tran TN, Holtappels D, Kim Ngan NL, Hao NP, Vallino M, Tien DTK, Khanh-Pham NH, Lavigne R, Kamei K, Wagemans J, Jones JB (2021) Phage biocontrol of bacterial leaf blight disease on welsh onion caused by Xanthomonas axonopodis pv. allii. Antibiotics (Basel) 10:517. https://doi.org/10.3390/antibiotics10050517

    Article  CAS  PubMed  Google Scholar 

  13. Ranjani P, Gowthami Y, Gnanamanickam SS, Palani P (2018) Bacteriophages: a new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiol Biotechnol Lett 46:346–359. https://doi.org/10.4014/mbl.1807.07009

    Article  CAS  Google Scholar 

  14. Balogh B, Canteros BI, Stall RE, Jones JB (2008) Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis 92:1048–1052. https://doi.org/10.1094/PDIS-92-7-1048

    Article  PubMed  Google Scholar 

  15. Dömötör D, Frank T, Rákhely G, Doffkay Z, Schneider G, Kovács T (2016) Comparative analysis of two bacteriophages of Xanthomonas arboricola pv. juglandis. Infect Genet Evol 43:371–377. https://doi.org/10.1016/j.meegid.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  16. Petrzik K, Lukavsky J, Koloniuk I (2021) Novel virus on filamentous Arthronema africanum cyanobacterium. Microb Ecol 81:454–459. https://doi.org/10.1007/s00248-020-01599-2

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. JMB 430:2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  Google Scholar 

  18. Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535. https://doi.org/10.1128/jb.184.16.4529-4535.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses. https://doi.org/10.3390/v12111268

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  21. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Simona Buchtova for her help with the laboratory work.

Funding

This work was financed with the state support of the Technology Agency of the Czech Republic within the Gama 2 program and with the institutional support RVO60077344 of the Czech Academy of Sciences and cofinanced with the Internal Grant Agency of MENDELU (IGA-ZF/2021-SI1002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data processing and analysis were performed by MN and SB. The first draft of the manuscript was written by MN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mária Neoralová.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neoralová, M., Brázdová, S., Eichmeier, A. et al. Complete genome sequence of Xanthomonas phage M29, a new member of Foxunavirus isolated in the Czech Republic. Virus Genes 59, 874–877 (2023). https://doi.org/10.1007/s11262-023-02027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02027-6

Keywords

Navigation