Skip to main content
Log in

Trematodes from Antarctic teleost fishes off Argentine Islands, West Antarctica: molecular and morphological data

  • Published:
Systematic Parasitology Aims and scope Submit manuscript

Abstract

In 2014–2015 and 2019–2021, teleost fishes off Galindez Island (Antarctic Peninsula) were examined for trematodes. Combined morphological and molecular analyses revealed the presence of eight trematode species of four families (Hemiuridae, Lecithasteridae, Opecoelidae, Lepidapedidae) from five fish species. Only adult trematodes were found and all of them are Antarctic endemics with their congeners occurring on other continents. The hemiuroids, Elytrophalloides oatesi (Leiper & Atkinson, 1914), Genolinea bowersi (Leiper & Atkinson, 1914), and Lecithaster macrocotyle Szidat & Graefe, 1967 belong to the most common Antarctic species and together with Lepidapedon garrardi (Leiper & Atkinson, 1914) and Neolebouria georgiensis Gibson, 1976 they were recorded as the least host-specific parasites. The originally sub-Antarctic Neolepidapedon macquariensis Zdzitowiecki, 1993 is a new record for the Antarctic Peninsula and Parachaenichthys charcoti (Vaillant), is a new host record. Neolebouria terranovaensis Zdzitowiecki, Pisano & Vacchi, 1993 is considered a synonym of N. georgiensis because of identical morphology and dimensions. The currently known phylogenetic relationships within the studied families are supported, including the polyphyly of Macvicaria Gibson & Bray, 1982 with the future need to accommodate its Antarctic species in a new genus. The validity of M. georgiana (Kovaleva & Gaevskaja, 1974) and M. magellanica Laskowski, Jezewski & Zdzitowiecki, 2013 needs to be confirmed by further analyses. Genetic sequence data are still scarce from Antarctica, and more studies applying integrative taxonomic approaches and large-scale parasitological examinations of benthic invertebrates are needed to match sequences of larval stages to those of well-characterised adults and to elucidate trematode life-cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Selected DNA sequences of studied specimens are deposited in GenBank and all specimens (hologenophores, vouchers) are deposited in publicly accessible permanent collections, the Helminthological Collection of the Institute of Parasitology, Biology Centre, CAS, České Budějovice Czech Republic, and in the Collection of I. I. Schmalhausen Institute of Zoology NAS of Ukraine, Kyiv, Ukraine.

References

  • Barnes, D. K. A., & Peck, L. S. (2008). Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Climate Research, 37, 149–163. https://doi.org/10.3354/cr00760

    Article  Google Scholar 

  • Bartoli, P., Bray, R. A., & Gibson, D. I. (1989). The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. III. Macvicaria Gibson & Bray, 1982. Systematic Parasitology, 13, 167–192. https://doi.org/10.1007/BF00009743

    Article  Google Scholar 

  • Bray, R. A. (1990). Hemiuridae (Digenea) from marine fishes of the southern Indian Ocean: Dinurinae, Elytrophallinae, Glomericirrinae and Plerurinae. Systematic Parasitology, 17, 183–217. https://doi.org/10.1007/BF00009553

    Article  Google Scholar 

  • Bray, R. A. (2005). Family Lepocreadiidae Odhner, 1905. In A. Jones, R. A. Bray, & D. I. Gibson, (Eds.), Keys to the Trematoda. Volume 2. (pp. 545–602). Wallingford: CABI Publishing. https://doi.org/10.1079/9780851995878.0545

  • Bray, R. A., Cribb, T. H., Littlewood, D. T. J., & Waeschenbach, A. (2016). The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily. Folia Parasitologica, 63, 1–11.

    Article  Google Scholar 

  • Bray, R. A., & Gibson, D. I. (1989). The Lepocreadiidae (Digenea) of fishes from the north-east Atlantic: review of the genus Neolepidapedon Manter, 1954, with a description of N. smithi n. sp. Systematic Parasitology, 13, 11–23. https://doi.org/10.1007/BF00006947

    Article  Google Scholar 

  • Bray, R. A., & Gibson, D. I. (1995). The Lepocreadiidae (Digenea) of fishes from the north-east Atlantic: a review of the genus Lepidapedon Stafford, 1904. Systematic Parasitology, 31, 81–132. https://doi.org/10.1007/BF02185544

    Article  Google Scholar 

  • Bray, R. A., & Justine, J. L. (2009) Opecoelids (Plathyhelminthes, Digenea) from the fork-tailed threadfin bream Nemipterus furcosus (Valenciennes, 1830) (Perciformes, Nemipteridae), with preliminary keys to the problematic genera Macvicaria Gibson et Bray, 1982 and Neolebouria Gibson, 1976. Acta Parasitologica, 54, 218–229. https://doi.org/10.2478/s11686-009-0041-3

    Article  Google Scholar 

  • Bray, R. A., Cutmore, S. C., & Cribb, T. H. (2021). A paradigm for the recognition of cryptic trematode species in tropical Indo-west Pacific fishes: the problematic genus Preptetos (Trematoda: Lepocreadiidae). International Journal for Parasitology, 14, S0020-7519(21)00278-2. https://doi.org/10.1016/j.ijpara.2021.08.004

  • Byrd, M. A. (1963). Helminth parasites of Antarctic vertebrates Part I. Digenetic trematodes of marine fishes. Proceedings of the Helminthological Society of Washington, 20, 129–148.

    Google Scholar 

  • Chown, S. L., Clarke, A., Fraser, C.I., Cary, S. C., Moon, K. L., & McGeoch, M. A. (2015). The changing form of Antarctic biodiversity. Nature, 522, 431–438. https://doi.org/10.1038/nature14505

    Article  CAS  PubMed  Google Scholar 

  • Clarke, A., Barnes, D. K. A., & Hodgson, D. A. (2005). How isolated is Antarctica? Trends in Ecology and Evolution, 20, 1–3. https://doi.org/10.1016/j.tree.2004.10.004

    Article  PubMed  Google Scholar 

  • Clarke, A., Johnston, N. M., Murphy, E. J., & Rogers, A. D. (2007). Antarctic ecology from genes to ecosystems: the impact of climate change and the importance of scale. Philosophical Transactions of the Royal Society of London B Biological Sciences, 362, 5–9. https://doi.org/10.1098/rstb.2006.1943

    Article  PubMed  Google Scholar 

  • Cribb, T. H. (2005). Family Opecoelidae Ozaki, 1925. In A. Jones, R.A. Bray, & D.I. Gibson, (Eds.), Keys to the Trematoda. Volume 2. (pp. 443–531). Wallingford: CABI Publishing. https://doi.org/10.1079/9780851995878.0545

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Broyer, C., & Danis, B. (2011). How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Research II: Topical Studies in Oceanography, 58, 5–17. https://doi.org/10.1016/j.dsr2.2010.10.007

    Article  Google Scholar 

  • Dronen, N. O., Blend, C. K., Ostrowski de Nunez, M. C., Malhotra, S. K., & Jaiswal, N. (2014). Keys to the species of Neolebouria Gibson, 1976 (Digenea: Opecoelidae: Plagioporinae), with a redescription of Neolebouria truncata (Linton, 1940). Systematic Parasitology, 88, 213–225. https://doi.org/10.1007/s11230-014-9498-z

    Article  PubMed  Google Scholar 

  • Ducklow, H. W., Baker, K., Martinson, D. G., Quetin, L. B., Ross, R. M., Smith, R. C., Stammerjohn, S. E., Vernet, M., & Fraser, W. (2007). Marine pelagic ecosystems: the West Antarctic Peninsula. Philosophical Transactions of the Royal Society of London B Biological Sciences, 362(1477), 67–94. https://doi.org/10.1098/rstb.2006.1955

    Article  PubMed  Google Scholar 

  • Eastman, J. T. (2005). The nature of the diversity of Antarctic fishes. Polar Biology, 28, 93–107. https://doi.org/10.1007/s00300-004-0667-4

    Article  Google Scholar 

  • Faltýnková, A., Georgieva S., Kostadinova, A., & Bray, R. A. (2017). Biodiversity and evolution of digeneans of fishes in the Southern Ocean. In S. Klimpel, T. Kuhn, & H. Mehlhorn (Eds.), Biodiversity and evolution of parasitic life in the Southern Ocean. Parasitology Research Monographs 9, (pp. 49–75). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-46343-8_5

  • Faltýnková, A., Kudlai, O., Pantoja, C., Yakovleva, G., & Lebedeva, D. I. (2022). Another plea for ‘best practice’ in molecular approaches to trematode systematics: Diplostomum sp. clade Q identified as Diplostomum baeri Dubois, 1937 in Europe. Parasitology, 1–16 (published on-line). https://doi.org/10.1017/S0031182021002092

  • Faltýnková, A., Pantoja, C., Skírnisson, K., & Kudlai, O. (2020). Unexpected diversity in northern Europe: trematodes from salmonid fishes in Iceland with two new species of Crepidostomum Braun, 1900. Parasitology Research, 119, 2439–2462. https://doi.org/10.1007/s00436-020-06724-1

    Article  PubMed  Google Scholar 

  • Froese, R., & Pauly, D. (2017). FishBase. World Wide Web electronic publication. Available at www.fishbase.org. Accessed 2021.

  • Gaevskaya, A. V. (1982). [The discovering of the trematode metacercariae in mysids of the South Georgia Island.] Nauchnye Doklady Vysshei Shkoly, Biologicheskie Nauki, 8, 27–29 (in Russian).

    Google Scholar 

  • Gaevskaya, A. B., & Kovaleva, A. A. (1976). The fauna of trematodes of some common fish species in the South-West Atlantic. Trudy AtlantNIRO, 60, 3–14 (in Russian).

    Google Scholar 

  • Gibson, D. I. (1976). Monogenea and Digenea from fishes. Discovery Reports, 36, 179–266.

    Google Scholar 

  • Gibson, D. I. (2002). Family Hemiuridae Looss, 1899. In D. I. Gibson, A. Jones, & R.A. Bray, (Eds.), Keys to the Trematoda. Volume 1. (pp. 305–340). Wallingford: CABI Publishing. https://doi.org/10.1079/9780851995472.0000

  • Gibson, D. I., & Bray, R. A. (1979). The Hemiuroidea: terminology, systematics and evolution. Bulletin of the British Museum Natural History, 36, 35–146. https://doi.org/10.5962/BHL.PART.3604

    Article  Google Scholar 

  • Gibson, D. I., & Bray, R. A. (1982). A study and reorganisation of Plagioporus Stafford, 1904 (Digenea: Opecoelidae) and related genera, with special reference to forms from European Atlantic waters. Journal of Natural History, 16, 529–559. https://doi.org/10.1080/00222938200770431

    Article  Google Scholar 

  • Graefe, G. (1971). Die Temperatur des Lebensraumes und ihre Wirkung auf Cercarien. Überlegungen und Versuche im Anschluß an Beobachtungen in der Antarktis. Parasitologische Schriftenreihe, 21, 151–156.

    Google Scholar 

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hechinger, R. F., Lafferty, K. D., Huspeni, T. C., Brooks, A. J., & Kuris, A. M. (2007). Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes. Oecologia, 151(1), 82–92. https://doi.org/10.1007/s00442-006-0568-z.

    Article  PubMed  Google Scholar 

  • Hildebrand, J., Sitko, J., Zalesny, G., Jezewski, W., & Laskowski, Z. (2016). Molecular characteristics of representatives of the genus Brachylecithum Shtrom, 1940 (Digenea, Dicrocoeliidae) with comments on life cycle and host specificity. Parasitology Research, 115(4), 1417–1425. https://doi.org/10.1007/s00436-015-4875-3

    Article  PubMed  Google Scholar 

  • Hudson, P. J., Dobson, A. P., & Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution, 7, 381–385. https://doi.org/10.1016/j.tree.2006.04.007

    Article  Google Scholar 

  • Jezewski, W., Zdzitowiecki, K., & Laskowski, Z. (2014). Digenea in notothenioid fish in the Beagle Channel (Magellanic sub-region, sub-Antarctica). Acta Parasitologica, 59, 42–49. https://doi.org/10.2478/s11686-014-0208-4

    Article  PubMed  Google Scholar 

  • Jurajda, P., Roche, K., Sedláček, I. & Všetičková, L. (2016). Assemblage characteristics and diet of fish in the shallow coastal waters of James Ross Island, Antarctica. Polar Biology, 39, 2299–2309. https://doi.org/10.1007/s00300-016-1896-z

    Article  Google Scholar 

  • Klimpel, S., Kuhn, T., & Mehlhorn, H. (2017). Introduction: Biodiversity and evolution of parasitic life in the Southern Ocean. In S. Klimpel, T. Kuhn, & H. Mehlhorn, (Eds.), Biodiversity and evolution of parasitic life in the Southern Ocean. Parasitology Research Monographs 9 (pp. 1–6). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-46343-8_1, 2017

  • Kovaleva, A. A., & Gaevskaya, A. B. (1974). New representatives of the genus Plagioporus (Trematoda, Opecoelidae) from the Antarctic fishes. Zoologicheskiy Zhurnal, 53, 1407–1409.

    Google Scholar 

  • Kudlai, O., Pantoja, C., O’Dwyer, K., Jouet, D., Skírnisson, K., & Faltýnková, A. (2021). Diversity of Plagiorchis (Trematoda: Digenea) in high latitudes: Species composition and snail host spectrum revealed by integrative taxonomy. Journal of Zoological Systematics and Evolutionary Research, 59, 937–962. https://doi.org/10.1111/jzs.12469

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuris, A. M., Hechinger, R. F., Shaw, J. C., Whitney, K. L., Aguirre, M. L., Boch, C. A., Dobson, A. P., Dunham, E. J., Fredensborg, B. L., Huspeni, T. C., Lorda, J., Mababa, L., Mancini, F. T., Mora, A. B., Pickering, M., Talhouk, N. L., Torchin, M. E., & Lafferty, K. D. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, 454, 515–518. https://doi.org/10.1038/nature06970

    Article  CAS  PubMed  Google Scholar 

  • Kuzmina, T. A., Salganskiy, O. O., Lisitsyna, O. I., & Korol, E. M. (2020). Helminths of Antarctic rockcod Notothenia coriiceps (Perciformes, Nototheniidae) from the Akademik Vernadsky Station area (Argentine Islands, West Antarctica): new data on the parasite community. Zoodiversity, 54, 99–110. https://doi.org/10.15407/zoo2020.02.099

    Article  Google Scholar 

  • Kuzmina, T. A., Dykyy, I. V., Salganskiy, O. O., Lisitsyna, O. I., Korol, E. M., & Kuzmin, Yu. I. (2021a). Helminth diversity in teleost fishes from the area of the Ukrainian Antarctic Station “Akademik Vernadsky”, Argentine Islands, West Antarctica. Zoodiversity, 55, 251–264. https://doi.org/10.15407/zoo2021.03.251

    Article  Google Scholar 

  • Kuzmina, T. A., Salganskiy, O. O., Dykyy, I. V., Lisitsyna, O. I., Korol, E. M., Faltýnková, A., & Kuzmin, Y. I. (2021b). Helminths of the Antarctic dragonfish, Parachaenichthys charcoti (Perciformes, Notothenioidei, Bathydraconidae) studied near Galindez Island (Argentine Islands, West Antarctica). Acta Parasitologica, 66, 1424–1430. https://doi.org/10.1007/s11686-021-00417-0

    Article  PubMed  Google Scholar 

  • Kvach, Y., & Kuzmina. T. (2020). Parasitological research in Antarctica: a review of the issues and future prospects. Ukrainian Antarctic Journal, 1, 102–110 (in Ukrainian). https://doi.org/10.33275/1727-7485.1.2020.383

  • Laskowski, Z., Jezewski, W., & Zdzitowiecki, K. (2013). Description of a new opecoelid trematode species from nototheniid fish in the Beagle Channel (Sub-Antarctica). Journal of Parasitology, 99, 487–489. https://doi.org/10.1645/GE-3167.1

    Article  PubMed  Google Scholar 

  • Laskowski, Z., & Zdzitowiecki, K. (2005). The helminth fauna of some notothenioid fishes collected from the shelf of Argentine Islands, West Antarctica. Polish Polar Research, 26, 315–324.

    Google Scholar 

  • Leiper, R. T., & Atkinson, E. T. (1914). Helminthes of the British Antarctic Expedition, 1910–1913. Proceedings of the Zoological Society of London, 1, 222–226.

    Google Scholar 

  • Leiper, R. T., & Atkinson, E. T. (1915). Parasitic worms, with a note on a free-living Nematode. British Antarctic (‘Terra Nova’) Expedition, 1910. Natural History Reports. Zoology. Vol. II. Collecting Stations, Mollusca, Brachiopoda and Worms, London. Trustees of the British Museum, 2, 19–60.

    Google Scholar 

  • Linse, K., Griffiths, H. J., Barnes, D. K. A., & Clarke, A. (2006). Biodiversity and biogeography of Antarctic and Sub-Antarctic mollusca. Deep Sea Research Part II Topical Studies in Oceanography, 53, 985–1008. https://doi.org/10.1016/j.dsr2.2006.05.003

    Article  Google Scholar 

  • Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449–466. https://doi.org/10.1006/mpev.2000.0802

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie, K. (2017). The history of Antarctic parasitological research. In S. Klimpel, T. Kuhn, & H. Mehlhorn (Eds.), Biodiversity and evolution of parasitic life in the Southern Ocean. Parasitology Research Monographs 9, (pp. 13–32). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-46343-8_3, 2017

  • Marcogliese, D. J., & Cone, D. K. (1997). Food webs: a plea for parasites. Trends in Ecology and Evolution, 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S. B., Cutmore, S. C., & Cribb, T. H. (2017). Revision of Neolebouria Gibson, 1976 (Digenea: Opecoelidae), with Trilobovarium n. g., for species infecting tropical and subtropical shallow-water fishes. Systematic Parasitology, 94, 307–338. https://doi.org/10.1007/s11230-017-9707-7

    Article  PubMed  Google Scholar 

  • Martin, S. B., Cutmore, S. C., & Cribb, T. H. (2018). Revision of Podocotyloides Yamaguti, 1934 (Digenea: Opecoelidae), resurrection of Pedunculacetabulum Yamaguti, 1934 and the naming of a cryptic opecoelid species. Systematic Parasitology, 95, 1–31. https://doi.org/10.1007/s11230-017-9761-1

    Article  PubMed  Google Scholar 

  • Martin, S. B., Huston, D. C., Cutmore, S. C., & Cribb, T. H., (2019). A new classification for deep-sea, opecoelid trematodes based on the phylogenetic position of some unusual taxa from shallow-water, herbivorous fishes off south-west Australia. Zoological Journal of the Linnean Society, 186, 385–413. https://doi.org/10.1093/zoolinnean/zly081

    Article  Google Scholar 

  • Mehlhorn, B., & Mehlhorn, H. (2017). Antarctica: The Peculiar Word. In S. Klimpel, T. Kuhn, & H. Mehlhorn (Eds.), Biodiversity and evolution of parasitic life in the Southern Ocean. Parasitology Research Monographs 9 (pp. 7–12). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-46343-8_2, 2017

  • Mouritsten, K. N., Tompkins, D. M., & Poulin, R. (2005). Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia, 146, 476–483. https://doi.org/10.1007/s00442-005-0223-0

    Article  Google Scholar 

  • Near, T. J. (2009). Notothenioid fishes (Notothenioidei). In S. B. Hedges, S. Kumar (Eds.), The Timetree of Life (pp. 339–343). Oxford University Press.

    Google Scholar 

  • Near, T. J., Dornburg, A., Kuhn, K. L., Eastman, J. T., Pennington, J. N., Patarnello, T., Zane, L., Fernández, D. A., & Jones, C. D. (2012). Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. PNAS, 109(9), 3434–3439. https://doi.org/10.1073/pnas.1115169109

    Article  PubMed  PubMed Central  Google Scholar 

  • Oğuz, M. C., Tepe, Y., Belk, M. C., Heckman, R. A., Aslan, B., Gurgen, M., Bray, R. A., & Akgul, U. (2015). Metazoan parasites of Antarctic fishes. Türkiye Parazitoloji Dergisi, 39, 174–178. https://doi.org/10.5152/tpd.2015.3661

    Article  Google Scholar 

  • Palm, H. W., Klimpel, S., & Walter, T. (2007). Demersal fish parasite fauna around the South Shetland Islands: high species richness and low host specificity in deep Antarctic waters. Polar Biology, 30, 1513–1522. https://doi.org/10.1007/s00300-007-0312-0

    Article  Google Scholar 

  • Pérez-Del-Olmo, A., Dallarés, S., Georgieva, S., Constenla, M., Kostadinova, A., & Carrassón, M. (2019). Species of Lepidapedon Stafford, 1904 (Digenea: Lepidapedidae) from deep-sea fishes in the Western Mediterranean: molecular and morphological evidence. Systematic Parasitology, 96(2), 149–169. https://doi.org/10.1007/s11230-019-09845-z.

    Article  PubMed  Google Scholar 

  • Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., & Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48(1), 369–371. https://doi.org/10.1016/j.ympev.2008.03.024

    Article  CAS  PubMed  Google Scholar 

  • Poulin, R. (2007). Evolutionary ecology of parasites. Princeton University Press, Princeton, NJ.

    Book  Google Scholar 

  • Prudhoe, S., & Bray, R. A. (1973). Digenetic trematodes from fishes. B.A.N.Z. Antarctic Expedition Reports, Series B, 8, 195–225.

    Google Scholar 

  • Rambaut, A. (2012). FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK. Retrieved from http://tree.bio.ed.ac.uk/software/figtree

  • Reimer, L. (1987). Helminthen von Fischen der Antarktis. Sektion Biologie/Chemie, der Paedagogischen Hochschule ‘Liselotte Herrmann’ Güstrow, 25, 36–40.

  • Rocka, A. (2006). Helminths of Antarctic fishes: Life cycle biology, specificity and geographical distribution. Acta Parasitologica, 51, 26–35. https://doi.org/10.2478/s11686-006-0003-y

    Article  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokolov, S. G. Gordeev, I. I., & Lebedeva D. I. (2016). Redescription of Proctophantastes gillissi (Overstreet et Pritchard, 1977) (Trematoda: Zoogonidae) with discussion on the systematic position of the genus Proctophantastes Odhner, 1911. Acta Parasitologica, 61, 529–536. https://doi.org/10.1515/ap-2016-0070

    Article  PubMed  Google Scholar 

  • Sokolov, S. G., Khasanov, F. K., & Gordeev, I. I. (2018). New data on the morphology and phylogenetic connections of Postlepidapedon opisthobifurcatum (Trematoda, Lepocreadioidea: Lepidapedidae), a parasite of Antarctic and sub-Antarctic fishes. Helminthologia, 55: 95–101. https://doi.org/10.2478/helm-2018-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolov, S. G., Atopkin, D. M., Urabe, M., & Gordeev, I. I. (2019a). Phylogenetic analysis of the superfamily Hemiuroidea (Platyhelminthes, Neodermata: Trematoda) based on partial 28S rDNA sequences. Parasitology, 146, 596–603. https://doi.org/10.1017/S0031182018001841.

    Article  PubMed  Google Scholar 

  • Sokolov, S. G., Lebedeva, D. I., Gordeev, I. I., & Khasanov, F. K. (2019b). Zdzitowieckitrema incognitum gen. et sp. nov. (Trematoda, Xiphidiata) from the Antarctic fish Muraenolepis marmorata Günther, 1880 (Gadiformes: Muraenolepidae): ordinary morphology but unclear family affiliation. Marine Biodiversity, 49, 451–462. https://doi.org/10.1007/s12526-017-0830-0

    Article  Google Scholar 

  • Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdańa, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., & Robertson, J. (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience, 57, 573–583. https://doi.org/10.1641/B570707

    Article  Google Scholar 

  • Szidat, L., & Graefe, G. (1967). Estudios sobre la fauna de parasitos de peces Antarticos. II. Los parasitos de Parachaenichthys charcoti. Servicio de Hidrografia Naval, Armada Argentina, 911, 1–27.

    Google Scholar 

  • Thatje, S. (2005). The future fate of the Antarctic marine biota? Trends in Ecology and Evolution, 20, 418–419. https://doi.org/10.1016/j.tree.2005.04.013

    Article  PubMed  Google Scholar 

  • Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C. L., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., &Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243–274. https://doi.org/10.1023/A:1026021217991

    Article  Google Scholar 

  • Weber, E. P. 3rd, & Govett, P. (2009). Parasitology and necropsy of fish. Compendium on Continuing Education for the Practicing Veterinarian, 31, E12.

    Google Scholar 

  • Wee, N. Q. X., Cribb, T. H., Bray, R. A., & Cutmore, S. C. (2017). Two known and one new species of Proctoeces from Australian teleosts: variable host-specificity for closely related species identified through multi-locus molecular data. Parasitology International, 66(2), 16–26. https://doi.org/10.1016/j.parint.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguti, S. (1958). Systema Helminthum. Volume 1. The Digenetic Trematodes of Vertebrates. New York: Interscience Publishers.

  • Zdzitowiecki, K. (1979). Digenetic trematodes in alimentary tracts of fishes of South Georgia and South Shetlands (Antarctica). Acta Ichthyologica et Piscatoria, 9, 15–31.

    Article  Google Scholar 

  • Zdzitowiecki. K. (1987). Digenetic trematodes from the alimentary tract of fishes off South Shetlands (Antarctic). Acta Parasitologica, 32, 219–232.

    Google Scholar 

  • Zdzitowiecki, K. (1990). Antarctic representatives of the genus Macvicaria Gibson & Bray, 1982 (Digenea Opecoelidae), with descriptions of two new species. Systematic Parasitology, 16, 169–179. https://doi.org/10.1007/BF00009144

    Article  Google Scholar 

  • Zdzitowiecki, K. (1992). Antarctic representatives of the genus Lecithaster Lühe, 1901 (Digenea, Hemiuridae), with the description of a new species. Acta Parasitologica, 37, 57–63.

    Google Scholar 

  • Zdzitowiecki, K. (1993). A re-examination of some Antarctic and sub-Antarctic fish digeneans from the collection of the British Museum (Natural History). Acta Parasitologica, 38, 157–160.

    Google Scholar 

  • Zdzitowiecki, K. (1997a). Antarctic Digenea, parasites of fishes. Koenigstein: Koeltz Scientific Books.

    Google Scholar 

  • Zdzitowiecki, K. (1997b). Digenea of fishes of the Weddell Sea. VI. The superfamily Hemiuroidea. Acta Parasitologica, 42, 219–224.

    Google Scholar 

  • Zdzitowiecki, K. (2002). Occurrence of Digenea in fishes of the family Bathydraconidae in the Weddell Sea and other areas of Antarctica. Acta Parasitologica, 47, 1230–2821.

    Google Scholar 

  • Zdzitowiecki, K., & Cielecka, D. (1997a). Digenea of fishes of the Weddell Sea. II. The genus Macvicaria (Opecoelidae). Acta Parasitologica, 42, 77–83.

    Google Scholar 

  • Zdzitowiecki, K., & Cielecka, D. (1997b). Digenea of fishes of the Weddell Sea. III. The Lepocreadiidae (genera Neolepidapedon and Lepidapedon), parasites of Notothenioidea. Acta Parasitologica, 42, 84–91.

    Google Scholar 

  • Zdzitowiecki, K., & Laskowski, Z. (2004). Helminths of an Antarctic fish, Notothenia coriiceps, from the Vernadsky Station (Western Antarctica) in comparison with Admiralty Bay (South Shetland Islands). Helminthologia, 41, 201–207.

    Google Scholar 

  • Zdzitowiecki, K., Pisano, E., & Vacchi, M. (1992). Additional data to Antarctic representatives of the genus Macvicaria Gibson et Bray, 1982 (Digenea, Opecoelidae), with a key to species occurring in the Antarctic. Acta Parasitologica, 37, 131–134.

    Google Scholar 

  • Zdzitowiecki, K., Pisano, E., & Vacchi, M. (1993). Antarctic representatives of the genus Neolebouria Gibson, 1976 (Digenea, Opecoelidae), with description of one new species. Acta Parasitologica, 38, 11–14.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Blanka Škoríková (Institute of Parasitology, Biology Centre) for help with scans of drawings.

Funding

This study was partially supported by the National Research Foundation of Ukraine (Project Number 2020.02/0074), the National Antarctic Scientific Center, Ministry of Education and Science of Ukraine (Projects H/03-2021) and the Joint Research Project between the National Academy of Science of Ukraine and the Czech Academy of Sciences 2020–2022 (NASU-20-05).

Author information

Authors and Affiliations

Authors

Contributions

TAK conceived and planned the study with AF and OK. Material preparation and data collection were performed by OOS, TAK and EMK. Morphological analysis was conducted by AF; molecular analysis was carried out by OK. AF wrote the first draft of the manuscript, TAK and OK wrote parts of it; all authors commented on the drafts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anna Faltýnková.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Applicable institutional, national and international guidelines for care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faltýnková, A., Kudlai, O., Salganskiy, O.O. et al. Trematodes from Antarctic teleost fishes off Argentine Islands, West Antarctica: molecular and morphological data. Syst Parasitol 99, 491–523 (2022). https://doi.org/10.1007/s11230-022-10041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11230-022-10041-9

Navigation