Skip to main content
Log in

NMR and computational studies of ammonium ion binding to dibenzo-18-crown-6

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Dibenzo-18-crown-6 (DB18C6) is a single-crown ether that can act as a host for a guest ion. In an effort to illuminate the relationships among structure, dynamics, and thermodynamics of ligand binding in a simple model for understanding the affinity and specificity of ligand interactions, nuclear magnetic resonance (NMR) experiments and density functional theory (DFT) were used to study the interaction of DB18C6 with ammonium ion. 1H-NMR was used to follow the titration of DB18C6 with ammonium chloride in deuterated methanol, a solvent chosen for its amphipathic character. Ammonium ion binds strongly to DB18C6 with a dissociation equilibrium constant at least as low as ~ \({10}^{-6}\) M. DFT calculations were used to identify optimized conformations of bound and free DB18C6 and to estimate its binding energy with ammonium ion in implicit solvent. An approach is described that accounts for geometry relaxation in addition to solvation correction and basis set superposition error; to our knowledge, this is the first such report that includes the energy difference from optimizing species geometry. The lowest-energy conformer of free DB18C6 in implicit methanol acquires an open, W-shaped structure that is also the lowest-energy conformer found for the DB18C6-ammonium ion complex. These results form a foundation for further studies of this system by molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data generated and/or analyzed during this study are available from the corresponding authors on request.

References

  1. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036. https://doi.org/10.1021/ja01002a035

    Article  CAS  Google Scholar 

  2. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:2495. https://doi.org/10.1021/ja00986a052

    Article  CAS  Google Scholar 

  3. Pedersen CJ, Frensdorff HK (1972) Macrocyclic polyethers and their complexes. Angew Chemie Int Ed English 11:16–25. https://doi.org/10.1002/anie.197200161

    Article  CAS  Google Scholar 

  4. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem Rev 91:1721–2085. https://doi.org/10.1021/cr00008a003

    Article  CAS  Google Scholar 

  5. De Jong F, Reinhoudt DN (1980) Stability and reactivity of crown-ether complexes. Adv Phys Org Chem 17:279–433. https://doi.org/10.1016/S0065-3160(08)60130-6

    Article  Google Scholar 

  6. Shchori E, Nae N, Jagur-Grodzinski J (1975) Stability constants of complexes of a series of metal cations with 6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexa-oxa-cyclo-octadecin (dibenzo-18-crown-6) in aqueous solutions. J Chem Soc Dalt Trans 2381. https://doi.org/10.1039/dt9750002381

  7. Angelis K, Brezina M, Koryta J (1973) Electrode processes of ammonium ion and its complexes with macrocyclic ligands in propylene carbonate and acetonitrile. J Electroanal Chem 45:504–507. https://doi.org/10.1016/S0022-0728(73)80064-6

    Article  CAS  Google Scholar 

  8. Izutsu K, Nakamura T, Murayama T, Fujinaga T (1978) The complexing of the ammonium Ion in acetonitrile with other solvents. Investigation Using a Cation-sensitive Glass Electrode. Bull Chem Soc Jpn 51:2905–2908. https://doi.org/10.1246/bcsj.51.2905

    Article  CAS  Google Scholar 

  9. Frensdorff HK (1971) Stability constants of cyclic polyether complexes with univalent cations. J Am Chem Soc 93:600–606. https://doi.org/10.1021/ja00732a007

    Article  CAS  Google Scholar 

  10. Fielding L (2007) NMR methods for the determination of protein-ligand dissociation constants. Prog Nucl Magn Reson Spectrosc 51:219–242. https://doi.org/10.1016/j.pnmrs.2007.04.001

    Article  CAS  Google Scholar 

  11. Live D, Chan SI (1976) Nuclear magnetic resonance study of the solution structures of some crown ethers and their cation complexes. J Am Chem Soc 98:3769–3778. https://doi.org/10.1021/ja00429a006

    Article  CAS  Google Scholar 

  12. Hoijemberg PA, Moss RA, Feinblum DV, Krogh-Jespersen K (2014) O-ylide and π-complex formation in reactions of a carbene with dibenzo and monobenzo crown ethers. J Phys Chem A 118:6230–6238. https://doi.org/10.1021/jp506154s

    Article  CAS  PubMed  Google Scholar 

  13. Perekalin DS, Babak MV, Novikov VV et al (2008) A new approach to the photochemically controlled crown ethers: (tetramethylcyclobutadiene)cobalt complexes with benzo-15-crown-5 and dibenzo-18-crown-6. Organometallics 27:3654–3658. https://doi.org/10.1021/om7002688

    Article  CAS  Google Scholar 

  14. Bright D, Truter MR (1970) Crystal structures of complexes between alkali-metal salts and cyclic polyethers. Part I. Complex formed between rubidium sodium iso-thiocyanate and 2,3,11, I 2-dibenzo-l,4,7,4 0,13,16-hexaoxocyclo-octadeca- 2, ll-diene (‘dibenzo-18-crown-6’). J Chem Soc 13:1544–1550. https://doi.org/10.1039/J29700001544

    Article  Google Scholar 

  15. Kriz J, Dybal J, Makrlik E, Budka J (2008) Interaction of hydronium ion with dibenzo-18-crown-6: NMR, IR, and theoretical study. J Phys Chem A 112:10236–10243. https://doi.org/10.1021/jp805757d

    Article  CAS  PubMed  Google Scholar 

  16. Dapporto P, Paoli P, Matijasic I, Tusek-Bozic L (1996) Crystal structures of complexes of ammonium and potassium hexafluorophosphate with dibenzo-18-crown-6. Molecular mechanics studies on the uncomplexed macrocycle. Inorganica Chim Acta 252:383–389. https://doi.org/10.1016/s0020-1693(96)05407-2

    Article  CAS  Google Scholar 

  17. Bright D, Truter MR (1970) Crystal structure of a cyclic polyether complex of alkali metal thiocyanate. Nature 225:176–177. https://doi.org/10.1038/225176a0

    Article  CAS  Google Scholar 

  18. Kolthoff IM (1979) Application of macrocyclic compounds in chemical analysis. Anal Chem 51:1–22. https://doi.org/10.1021/ac50041a001

    Article  Google Scholar 

  19. Min Choi C, Heo J, Joon Kim N (2012) Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: a density functional theory study using a continuum solvation model. Chem Cent J 6:1–8. https://doi.org/10.1186/1752-153X-6-84

    Article  CAS  Google Scholar 

  20. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  21. Klotz IM (1997) Ligand-receptor energetics : a guide for the perplexed. Wiley, New York

    Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  24. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  26. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  27. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  28. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382. https://doi.org/10.1021/ct0502763

    Article  CAS  PubMed  Google Scholar 

  30. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  31. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  32. Turney JM, Simmonett AC, Parrish RM et al (2012) Psi4: an open-source ab initio electronic structure program. WIREs Comp Mol Sci 2:556–565. https://doi.org/10.1002/wcms.93

    Article  CAS  Google Scholar 

  33. Parrish RM, Burns LA, Smith DG et al (2017) PSI4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J Chem Theory Comput 13:3185–3197. https://doi.org/10.1021/acs.jctc.7b00174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09 Revision A.02, Gaussian Inc., Wallingford, CT

  35. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16 Revision C.01, Gaussian Inc., Wallingford, CT

  36. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  37. Willcott MR (2009) MestRe Nova. J Am Chem Soc 131:13180. https://doi.org/10.1021/ja906709t

    Article  CAS  Google Scholar 

  38. Thompson MA, Glendening ED, Feller D (1994) The nature of K+/crown ether interactions: a hybrid quantum mechanical-molecular mechanical study. J Phys Chem 98:10465–10476. https://doi.org/10.1021/j100092a015

    Article  CAS  Google Scholar 

  39. Glendening ED, Feller D, Thompson MA (1994) An ab initio investigation of the structure and alkali metal cation selectivity of 18-crown-6. J Am Chem Soc 116:10657–10669. https://doi.org/10.1021/ja960469n

    Article  CAS  Google Scholar 

  40. Saielli G (2010) Differential solvation free energies of oxonium and ammonium ions: insights from quantum chemical calculations. J Phys Chem A 114:7261–7265. https://doi.org/10.1021/jp103783j

    Article  CAS  PubMed  Google Scholar 

  41. Cantor C, Schimmel PR (1980) Biophysical chemistry, 3rd ed. W. H. Freeman, San Francisco

  42. Carey J (2022) Affinity, specificity, and cooperativity of DNA binding by bacterial gene regulatory proteins. Int J Mol Sci 23. https://doi.org/10.3390/ijms23010562

Download references

Funding

B. M. and D. R acknowledge access to modeling facilities supported by the Czech research infrastructure for systems biology C4SYS (project no. LM2015055) and computational resources provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the program “Projects of Large Research, Development, and Innovations Infrastructures.” This work was carried out when B. S. was an undergraduate research participant in an NSF REU Training Site in Molecular Biophysics supported by awards DBI13-58737 and DBI16-59726 to J.C.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: J. C. and D. B. M.; materials preparation and NMR data collection: B. S. and I. P.; computational data coysellection: B. S., B. M., D. B. M., D. R. All authors contributed to data analysis. The first draft of the manuscript was written by B. S. and J. C., and all authors contributed to intermediate versions. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to D. Brandon Magers or Jannette Carey.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11224_2022_2017_MOESM1_ESM.docx

Alist of coordinates for the optimized structures of conformers I through VI and the details of Psi4 and Gaussiancomputations are supplied as Supporting Information. Gas phase, implicitwater, and implicit methanol structures are available for both the complexedand uncomplexed DB18C6. Additionally, counterpoise correction and basis setsuperposition error calculation details for implicit solvent are includedwithin the Supporting Information (DOCX 259 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shope, B., Magers, D.B., Pelczer, I. et al. NMR and computational studies of ammonium ion binding to dibenzo-18-crown-6. Struct Chem 34, 713–722 (2023). https://doi.org/10.1007/s11224-022-02017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02017-8

Keywords

Navigation