Skip to main content
Log in

Streamer-Based Discharge on Water–Air Interface as a Source of Plasma-Activated Water: Conceptual Design and Basic Performance

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Here we propose a geometrical analogue of a surface coplanar DBD electrode system allowing the generation of multiple filamentary discharges expanding along the surface of a thin water layer in a flow-through type reactor. A stable layer of deionized/tap water is maintained by a constant flow and separates active discharge filaments from the submerged metal electrodes. Discharges are produced by the application of periodic bipolar high-voltage pulses with a repetition frequency of tens of hertz and lasting a few microseconds. The duration of the high-voltage pulses combined with the non-zero water conductivity allows a partial transition of the initial cold streamer phase to the hot spark phase. Plasma-induced optical emission analysis showed significant heating of the developed filaments (850 K) and increased electron number density (4·1017 cm−3), proving the streamer to spark transition. The analysis of the dissolved products of the discharges showed the maximum NO2 and H2O2 production yields of 35 and 30 mmol·kWh−1, respectively. The current conceptual design is easily scalable by adding pairs of high voltage and grounded compartments with additional water inlets/outlets or by extending the length of the blade separating two adjacent compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adamovich I et al (2022) The 2022 Plasma Roadmap: low temperature plasma science and technology. J Phys D: Appl Phys. https://doi.org/10.1088/1361-6463/ac5e1c,p.373001

    Article  Google Scholar 

  2. Bruggeman PJ et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/25/5/053002

    Article  Google Scholar 

  3. Chen Q, Li J, Li Y (2015) A review of plasma–liquid interactions for nanomaterial synthesis. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/48/42/424005

    Article  Google Scholar 

  4. Weltmann KD et al (2019) The future for plasma science and technology. Plasma Process Polym. https://doi.org/10.1002/ppap.201800118

    Article  Google Scholar 

  5. Šimek M, Homola T (2021) Plasma-assisted agriculture: history, presence, and prospects—a review. Eur Phys J D. https://doi.org/10.1140/epjd/s10053-021-00206-4

    Article  Google Scholar 

  6. Kajiyama H, Utsumi F, Nakamura K, Tanaka H, Mizuno M, Toyokuni S, Hori M, Kikkawa F (2016) Possible therapeutic option of aqueous plasma for refractory ovarian cancer. Clin Plasma Med. https://doi.org/10.1016/j.cpme.2015.12.002

  7. Jablonowski H, Woedtke T (2015) Research on plasma medicine-relevant plasma–liquid interaction: What happened in the past five years? Clin Plasma Med. https://doi.org/10.1016/j.cpme.2015.11.003

  8. Anbar M, Taube H (1954) Interaction of nitrous acid with hydrogen peroxide and with water. J Am Chem Soc. https://doi.org/10.1021/ja01653a007

    Article  Google Scholar 

  9. Winter J et al (2014) Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/47/28/285401

    Article  Google Scholar 

  10. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/23/1/015019

    Article  Google Scholar 

  11. Brunelli L, Crow JP, Beckman JS (1995) The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem. https://doi.org/10.1006/abbi.1995.1044

    Article  PubMed  Google Scholar 

  12. Brisset JL, Pawlat J (2016) Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-015-9653-6

  13. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/42/5/053001

    Article  Google Scholar 

  14. Dang TH, Denat A, Lesaint O, Teissedre G (2008) Degradation of organic molecules by streamer discharges in water: coupled electrical and chemical measurements. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/17/2/024013

    Article  Google Scholar 

  15. Grymonpré DR, Sharma AK, Finney WC, Locke BR (2001) The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors. J Chem Eng. https://doi.org/10.1016/S1385-8947(00)00345-4

    Article  Google Scholar 

  16. Lukes P, Clupek M, Babicky V, Janda V (2002) Effect of ceramic composition on pulse discharge induced processes in water using ceramic-coated wire to cylinder electrode system. Czechoslov J Phys 52:800–806

    Google Scholar 

  17. Shih KY, Locke BR (2010) Chemical and physical characteristics of pulsed electrical discharge within gas bubbles in aqueous solutions. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-009-9207-x

    Article  Google Scholar 

  18. Anpilov AM et al (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/34/6/322

    Article  Google Scholar 

  19. Baerdemaeker FD, Simek M, Leys C (2007) Efficiency of hydrogen peroxide production by ac capillary discharge in water solution. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/40/9/021

    Article  Google Scholar 

  20. Wang L (2009) 4-Chlorophenol degradation and hydrogen peroxide formation induced by DC diaphragm glow discharge in an aqueous solution. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-009-9172-4

    Article  Google Scholar 

  21. Potocky S, Saito N, Takai O (2009) Needle electrode erosion in water plasma discharge. Thin Solid Films. https://doi.org/10.1016/j.tsf.2009.07.172

    Article  Google Scholar 

  22. Sun B, Kunitomo S, Igarashi C (2006) Characteristics of ultraviolet light and radicals formed by pulsed discharge in water. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/39/17/016

    Article  Google Scholar 

  23. Lukes P, Appleton AT, Locke BR (2004) Hydrogen peroxide and ozone formation in hybrid gas–liquid electrical discharge reactors. IEEE Trans Ind Appl. https://doi.org/10.1109/TIA.2003.821799

  24. Petrishchev V, Leonov S, Adamovich A (2014) Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/23/6/065022

    Article  Google Scholar 

  25. Thagard SM, Thagard K, Mizuno A (2009) Chemistry of the positive and negative electrica discharges formed in liquid water and above a gas-liquid surface. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-009-9195-x

    Article  Google Scholar 

  26. Baroch P, Saito N, Takai O (2008) Special type of plasma dielectric barrier discharge reactor for direct ozonization of water and degradation of organic pollution. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/41/8/085207

    Article  Google Scholar 

  27. Kovačević VV, Dojcinovic B, Jović MS, Kuraica MM, Roglic GM, Obradović BM (2017) Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J Phys D: Appl Phys. https://doi.org/10.1088/1361-6463/aa5fde

    Article  Google Scholar 

  28. Höft H, Kettlitz M, Brandenburg R (2021) The role of a dielectric barrier in single-filament discharge over a water surface. J Appl Phys. https://doi.org/10.1063/5.0035186

    Article  Google Scholar 

  29. Jamroz P, Greda K, Pohl P, Zyrnicki W (2014) Atmospheric pressure glow discharges generated in contact with flowing liquid cathode: production of active species and application in wastewater purification processes. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-013-9503-3

    Article  Google Scholar 

  30. Lu P, Boehm D, Cullen P, Bourke P (2017) Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge. Appl Phys Lett DOI 10(1063/1):4990525

    Google Scholar 

  31. Burlica R, Shih KY, Locke BR (2010) Formation of H2 and H2O2 in a water-spray gliding arc nonthermal plasma reactor. Ind Eng Chem Res. https://doi.org/10.1021/ie100038g

    Article  Google Scholar 

  32. Machala Z, Tarabová B, Hensel K, Dolezalova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process Polym. https://doi.org/10.1002/ppap.201200113

    Article  Google Scholar 

  33. Porter D, Poplin MD, Holzer F, Finney WC, Locke BR (2009) Formation of hydrogen peroxide, hydrogen, and oxygen in gliding arc electrical discharge reactors with water spray. IEEE Trans. Ind. Appl. https://doi.org/10.1109/07IAS.2007.175

  34. Machala Z et al. (2017) Plasma activated water chemical properties and antibacterial action depend on the plasma source and its interaction with water. In: Intern. plasma chem. soc. conf., online proceedings ISPC 23, Montreal

  35. Vlad IE, Anghel SD (2017) Time stability of water activated by different on-liquid atmospheric pressure plasmas. J Electrostat. https://doi.org/10.1016/j.elstat.2017.06.002

    Article  Google Scholar 

  36. Adachi T, Tanaka H, Nonomura S, Hara H, Kondo S, Hori M (2015) Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2014.11.014

    Article  PubMed  Google Scholar 

  37. Laurita R, Barbieri D, Gherardi M, Colombo V, Lukes P (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med. https://doi.org/10.1016/j.cpme.2015.10.001

  38. Cserfalvi T, Mezei P (1996) Operating mechanism of the electrolyte cathode atmospheric glow discharge. Fresen J Anal Chem. https://doi.org/10.1007/s0021663550813

    Article  Google Scholar 

  39. Cserfalvi T, Mezei P (2005) Investigations on the element dependency of sputtering process in the electrolyte cathode atmospheric discharge. J Anal At Spectrom. https://doi.org/10.1039/B504610F

    Article  Google Scholar 

  40. Mezei P, Cserfalvi T (2007) Charge densities in the electrolyte cathode atmospheric glow discharges (ELCAD). Eur Phys J Appl Phys. https://doi.org/10.1051/epjap:2007123

    Article  Google Scholar 

  41. Kogelschatz K (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process. https://doi.org/10.1023/A:1022470901385

    Article  Google Scholar 

  42. Gibalov V, Pietsch GJ (2004) Dynamics of dielectric barrier discharges in coplanar arrangements. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/37/15/006

  43. Bruggeman P et al (2008) Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sour Sci Technol. https://doi.org/10.1088/0963-0252/17/2/025012

    Article  Google Scholar 

  44. Bruggeman P, Liu J, Degroote J, Kong MG, Vierendeels J, Leys C (2008) Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/41/21/215201

    Article  Google Scholar 

  45. Akishev YS, Karalnik V, Medvedev M, Petryakov A, Trushkin N, Shafikov A (2017) Streamers sliding on a water surface. EPJ Appl Phys. https://doi.org/10.1051/epjap/2017170008

  46. Hoffer P, Sugiyama Y, Hosseini SHR, Akiyama H, Lukes P, Akiyama M (2016) Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/49/41/415202

    Article  Google Scholar 

  47. Akishev Y et al (2017) Propagation of positive streamers on the surface of shallow as well as deep tap water in wide and narrow dielectric channels. Plasma Sour Sci Technol. https://doi.org/10.1088/1361-6595/26/2/025004

    Article  Google Scholar 

  48. Furusato T et al (2020) Validation of the local thermodynamic equilibrium at a local current concentration area of positive pulsed surface discharge plasma on water. Jpn J Appl Phys. https://doi.org/10.35848/1347-4065/ab71d9

  49. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04158-1

    Article  Google Scholar 

  50. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem, Anal. https://doi.org/10.1021/i560117a011

  51. Tarabová B et al (2018) Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process Polym. https://doi.org/10.1002/ppap.201800030

    Article  Google Scholar 

  52. Stratton GR, Bellona CL, Dai F, Holsen TM, Thagard SM (2015) Plasma-based water treatment: conception and application of a new general principle for reactor design. J Chem Eng. https://doi.org/10.1016/j.cej.2015.03.059

    Article  Google Scholar 

  53. Winters C, Petrishchev V, Yin Z, Lempert WR, Adamovich IV (2015) Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid/vapor interface. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/48/42/424002

    Article  Google Scholar 

  54. Šimek M (2014) Optical diagnostics of streamer discharges in atmospheric gases. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/47/46/463001

    Article  Google Scholar 

  55. Parra-Rojas FC et al (2013) Spectroscopic diagnostics of laboratory air plasmas as a benchmark for spectral rotational (gas) temperature determination in TLEs. J Geophys Res Space Phys. https://doi.org/10.1002/jgra.50433

    Article  Google Scholar 

  56. Doležalová E, Prukner V, Kuzminova A, Šimek M (2020) On the inactivation of Bacillus subtilis spores by surface streamer discharge in humid air caused by reactive species. J Phys D: Appl Phys. https://doi.org/10.1088/1361-6463/ab7cf7

    Article  Google Scholar 

  57. Lietz AM, Kushner MJ (2016) Air plasma treatment of liquid covered tissue: long timescale chemistry. J Phys D: Appl Phys. https://doi.org/10.1088/0022-3727/49/42/425204

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Grant Agency of the Czech Republic under the project No. *GA18-12386S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hoffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffer, P., Niedoba, K., Jirásek, V. et al. Streamer-Based Discharge on Water–Air Interface as a Source of Plasma-Activated Water: Conceptual Design and Basic Performance. Plasma Chem Plasma Process 43, 1531–1547 (2023). https://doi.org/10.1007/s11090-023-10325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10325-y

Keywords

Navigation