Skip to main content
Log in

Analysis of the rainfall pattern triggering the Lemešná debris flow, Javorníky Range, the Czech Republic

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Two significant rainfall episodes affected the eastern part of the Czech Republic in May 2010 causing dozens of landslides, including a potentially damaging debris flow on Lemešná Mt. in the Javorníky Range on the 2 June 2010. The rainfall data from the rainfall gauges managed by the Czech Hydrometeorological Institute situated 7, 12 and 20 km from the debris flow were analysed and a new rainfall gauge was installed in the immediate vicinity of the debris flow. The following rainfall parameters were calculated as moving values for each day within the period from 1983 to 2018: cumulative rainfall of 2, 3, 5, 10, 20, 30, 60 days and an antecedent precipitation index of 5, 10, 20, 30, 60 days. The rainfall totals, which exceeded the debris flow triggering precipitation by many times, but no slope deformation was recorded during them, were also analysed. The debris flow triggering rainfall values were assessed and they showed a single concordance of all of the tested rainfall parameters on the day of the debris flow. We found that the combination of cumulative rainfall for 30 days together with 1-day and 3-day amounts, overall rainfall pattern and the development of the rainfall situation were more important for triggering the Lemešná debris flow than the individual rainfall extremes. This provides a new perspective to the rainfall thresholds issue. The importance of choosing the calculating method between the cumulative rainfalls and the antecedent precipitation index is illustrated by the significant differences between the values. The significance of the rainfall gauge selection is also emphasised, since the orographic position together with the distance between gauges can significantly influence the differences between on-site and measured rainfall amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham MT, Satyam N, Rosi A, Pradhan B, Segoni S (2020) The selection of rain gauges and rainfall parameters in estimating intensity-duration thresholds for landslide occurrence: case study from Wayanad (India). Water 12:1000

    Article  Google Scholar 

  • Aristizábal E, Martínez H, Velez J (2011) Analysis of empirical rainfall thresholds for the prognosis of landslides in the Aburrá Valley Colombia. Rev EIA Esc Ing Antioq 15:95–111

    Google Scholar 

  • Au SWC (1998) Rain induced slope instability in Hong Kong. Eng Geol 51:1–36

    Article  Google Scholar 

  • Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring of 2006. Geomorphology 99:246–253

    Article  Google Scholar 

  • Bíl M, Andrášik R, Zahradníček P, Kubeček J, Sedoník J, Štěpánek P (2016) Total water content thresholds for shallow landslides Outer Western Carpathians. Landslides 13:337–347

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann 62A(1–2):23–27

    Google Scholar 

  • Campbell R (1975) Soil slips debris flows and rainstorms in the Santa Monica Mountains and vicinity Southern California. USGS Professional Paper 851, p 51

  • Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laberd JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96(250–269):250–269

    Article  Google Scholar 

  • Cardinali M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2005) Rainfall induced landslides in December 2004 in South-Western Umbria Central Italy. Nat Hazards Earth Syst Sci 6:237–260

    Article  Google Scholar 

  • Cascini L, Versace P (1986) Eventi pluviometrici e movimenti franosi. Agi, XVI Convegno Nazionale di Geotecnica, Bologna 14–16 May 1986, pp 171–184

  • Chleborad AF (2003) Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle Washington. US Geological Survey open-file report 00–469 US Geological Survey Reston

  • Chlupáč I (2002) Geologická minulost České republiky. Academia, Prague, Czech Republic, p 436

    Google Scholar 

  • Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow In: Mugnai A, Guzzetti F, Roth G (Eds) Proceedings of the 2nd EGS Plinius conference on mediterranean storm Italy. Siena, pp 463–487

  • Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Process Landf 24:825–833

    Article  Google Scholar 

  • Cruden DM, Varnes J (1996) Landslides types and processes In: Turner AK, Schuster RL (Eds) Landslides: investigation and mitigation transportation. Research board special report 247, National Academy Press, Washington DC, pp 36–75

  • Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100:429–443

    Article  Google Scholar 

  • De Vita P (2000) Fenomeni di instabilità della coperture piroclastiche dei monti Lattari di Sarno e di Salerno (Campania) ed analisi degli eventi pluviometrici determinanti. Quaderni di Geologia Applicata 7(2):213–235

    Google Scholar 

  • Dhakal AS, Sidle CR (2004) Pour water pressure assessment in a forest watershed: simulations and distributed field measurements related to forest practices. Water Resour Res 40:20

    Article  Google Scholar 

  • Dlabáčková T (2015) Formation conditions of debris flow on 15.5.2014 in Smutná valley (Western Tatra Mts.). Bachelor’s thesis. Charles University in Prague, Faculty of Science, Department of Physical Geography and Geoecology, p 66

  • Drábová Z (2018) Rainfall analysis of debris flows in the Obří důl Valley in the Krkonoše Mts., Czechia. AUC Geographica 53(2):220–237

    Article  Google Scholar 

  • Engel Z, Česák J, Escobar VR (2011) Rainfall-related debris flows in Carhuacocha Valley Cordillera Huayhuash Peru. Landslides 8:269–278

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181

    Article  Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari V, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily southern Italy. Geomorphology 228:653–665

    Article  Google Scholar 

  • Gil E, Starkel L (1979) Long-term extreme rainfalls and their role in the modelling of flysch slopes. Stud Geomorphol Carpatho-Balc 13:207–219

    Google Scholar 

  • Gil E (1997) Meteorological and hydrological conditions of landslide Polish Flysch Carpathians. Stud Geomorphol Carpatho-Balc 30:144–158

    Google Scholar 

  • Gil E, Długosz M (2006) Threshold values of rainfalls triggering selected deep-seated landslides in the Polish flysch Carpathians. Stud Geomorphol Carpatho-Balc XI:21–43

    Google Scholar 

  • Govi M, Mortara G, Sorzana PF (1985) Eventi idrologici e frane. GeolAppl Idrogeol XX(2):359–375

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Hladný J (1962) Some remarks on the problematics of parameters of precipitation–runoff relationships. Sborník mezinárodní hydrologické konference Slovenské akademie věd a Ústavu hydrologie a hydrauliky Bratislava, pp 1–11 (in Czech)

  • Hong Y, Adler R, Huffman G (2006) Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys Res Lett 33:5

    Article  Google Scholar 

  • Hong Y, Adler RF (2008) Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int J Sediment Res 23(3):249–257

    Article  Google Scholar 

  • Hutchinson JN (1970) A coastal mudflow on the London Clay cliffs at Beltinge North Kent. Geotechnique 20:412–438

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Janoška M (2013) Sopky a sopečné vrchy ČR. Academia, Prague, Czech Republic, p 416

    Google Scholar 

  • Jibson RW (1989) Debris flows in southern Puerto Rico. Geol Soc Am 236:29–55

    Google Scholar 

  • Kirchner K, Krejčí O, Máčka Z, Bíl M (2000) Slope deformations in eastern Moravia Vsetín District (Outer Western Carpathians). AUC XXXV:133–143

    Google Scholar 

  • Kim SK, Hong WP, Kim YM (1991) Prediction of rainfall-triggered landslides in Korea. In: Bell DH (ed) landslides. AA Balkema, Rotterdam, pp 989–994

    Google Scholar 

  • Kirschbaum D, Adler R, Adler D, Peters-Lidard C, Huffman G (2012) Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. J Hydrometeor 13:1536–1551

    Article  Google Scholar 

  • Klimeš J, Baroň I, Pánek T, Kosačík T, Burda J, Kresta F, Hradecký J (2009) Investigation of recent catastrophic landslides in the flysch belt of Outer Western Carpathians (Czech Republic): progress towards better hazard assessment. Nat Hazards Earth Syst Sci 9:119–128

    Article  Google Scholar 

  • Klimeš J, Vilímek V (2011) A catastrophic landslide near Rampac Grande in the Cordillera Negra northern Peru. Landslides 8:309–320

    Article  Google Scholar 

  • Klimeš J, Blahůt J (2012) Landslide risk analysis and its application in regional planning: an example from the highlands of the Outer Western Carpathians Czech Republic. Nat Hazards 64:1779–1803

    Article  Google Scholar 

  • Kohler MA, Linsley RK (1951) Predicting the runoff from storm rainfall. Weather Bureau US Department of Commerce Research Paper No. 34 Washington

  • Kotarba A (2007) Geomorphic activity of debris flows in the Tatra Mts. and in other European mountains. Geographia Polonica 80(2):137–150

    Google Scholar 

  • Kováčik M (1991) Slope deformations in the flysch strata of the West Carpathians. In: Bell DH (ed) Landslides-Glissements de terrain, vol 1. AA Balkema, Rotterdam, pp 139–144

    Google Scholar 

  • Krejčí O, Baroň I, Bíl M, Hubatka F, Jurová Z, Kirchner K (2002) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys Chem Earth A/B/C 27(36):1567–1576

    Article  Google Scholar 

  • Kudrna K, Rybar J, Buzek J, Janos V, Novotny J (2003) Investigation of the triggering factor leading to an increased landsliding in the Czech Republic due to enormous saturation of rock environment. Acta Montana IRSM CR Ser AB 12(132):75–84

    Google Scholar 

  • Łajczak A, Migoń P (2007) The 2002 debris flow in the Babia Góra massif-implications for the interpretation of mountainous geomorphic systems. Studia Geomorphologica Carpatho-Balcanica 41:97–116

    Google Scholar 

  • Lee S, Won JS, Jeon SW, Park I, Lee MJ (2015) Spatial landslide hazard prediction using rainfall probability and a logistic regression model. Math Geosci 47(5):565–589

    Article  Google Scholar 

  • Ma T, Li C, Lu Z, Wang B (2014) An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology 216:187–192

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9:485–495

    Article  Google Scholar 

  • Migoń P, Hrádek M, Parzóch K (2002) Extreme geomorphic events in the Sudetes Mountains and their long-term impact. Studia Geomorphologica Carpatho-Balcanica 36:29–49

    Google Scholar 

  • Mishra SK, Singh VP (2003) Soil conservation service curve number (SCS-CN) methodology. Kluwer Academic Publisher, Dordrecht, p 456

    Book  Google Scholar 

  • Nemčok A, Pašek J, Rybář J (1972) Classification of landslides and other mass movements. Rock Mech 4:71–78

    Article  Google Scholar 

  • Nikolopoulos EI, Crema S, Marchi L, Marra F, Guzzetti F, Borga M (2014) Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 221:286–297

    Article  Google Scholar 

  • Pánek T, Hradecký J, Šilhán K (2009) Geomorphic evidence of ancient catastrophic flow type landslides in the mid-mountain ridges of the Western Flysch Carpathian Mountains (Czech Republic). Int J Sediment Res 24:88–98

    Article  Google Scholar 

  • Pánek T, Brázdil R, Klimeš J, Smolková V, Hradecký J, Zahradníček P (2011a) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides 8:507–516

    Article  Google Scholar 

  • Pánek T, Šilhán K, Tábořík P, Hradecký J, Smolková V, Lenart J, Brázdil R, Kašičková L, Pazdur A (2011b) Catastrophic slope failure and its origins: case of the May 2010 Girová Mountain long-runout rockslide (Czech Republic). Geomorphology 130:352–364

    Article  Google Scholar 

  • Pánek T, Lenart J (2016) Landslide Landscape of the Moravskoslezské Beskydy mountains and their surroundings. In: Pánek T, Hradecký J (eds) Landscapes and landforms of the Czech Republic, world geomorphological landscapes. Springer, Cham, pp 347–359

    Chapter  Google Scholar 

  • Panziera L, Germann U, Gabella M, Mandapaka PV (2011) NORA - nowcasting of orographic rainfall by means of analogues. Q J R Meteorol Soc 137:2106–2123

    Article  Google Scholar 

  • Pašek J (1974) Hauttypen und Ursachen der Hangbewegungen. Zeitschrift geol Wissen 2:421–428

    Google Scholar 

  • Pecho J, Faško P, Lapin M, Kajaba P, Mikulová K, Šťastný P (2010) Extreme atmospheric precipitation in spring and the beginning of summer 2010 in Slovakia. Meteorologický časopis 13:69–80 ((in Slovak with English abstract))

    Google Scholar 

  • Pilous V (1973) Strukturní mury v Krkonoších - I. část. Opera Corcontica 10:15–69

    Google Scholar 

  • Pilous V (1975) Strukturní mury v Krkonoších - II. část. Opera Corcontica 12:7–50

    Google Scholar 

  • Pilous V (1977) Strukturní mury v Krkonoších - III. část. Opera Corcontica 14:7–94

    Google Scholar 

  • Polemio M, Petrucci O (2000) Rainfall as a landslide triggering factor: an overview of recent international research. In: Bromhead E, Dixon N, Ibsen ML (eds) Landslides in research theory and practice, vol 3. Thomas Telford, London, pp 1219–1226

    Google Scholar 

  • Rączkowski W (2007) Landslide hazard in the Polisch flysch Carpathians. Stud Geomoph Carpatho-Balcan 41:61–75

    Google Scholar 

  • Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alp). Clim Chang 36:371–389

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  • Rosi A, Peternel T, Jemec-Auflič M, Komac M, Segoni S, Casagli N (2016) Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 13:1571–1577

    Article  Google Scholar 

  • Saadatkhah N, Kassim A, Lee LM (2015) Hulu Kelang Malaysia regional mapping of rainfall-induced landslides using TRIGRS model. Arab J Geosci 8(5):3183–3194

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018a) A review of the recent literature on rainfall thresholds for landslides occurrence. Landslides 15:1483–1501

    Article  Google Scholar 

  • Segoni S, Rosi A, Fanti R, Gallucci A, Monni A, Casagli N (2018b) A regional-scale landslide warning system based on 20 years of operational experience. Water 10:1297

    Article  Google Scholar 

  • Sengupta A, Gupta S, Anbarasu K (2010) Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim India. Nat Hazards 52:31–42

    Article  Google Scholar 

  • Sepúlveda SA, Petley DN (2015) Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat Hazards Earth Syst Sci 15:1821–1833

    Article  Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes prediction and land use, vol 18. Water resources monograph. American Geophysical Union, Washington DC, p 317

    Google Scholar 

  • Smolíková J, Blahut J, Vilímek V (2016) Analysis of Rainfall Preceding Debris Flows on the Smědavská hora Mt Jizerské hory Mts Czech Republic. Landslides 13(4):683–696

    Article  Google Scholar 

  • Šilhán K, Pánek T (2010) Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology 124(3–4):238–249

    Article  Google Scholar 

  • Špůrek M (1972) Historical catalogue of slide phenomena, Studia Geographica No 19, p 17

  • Šunka Z (2011) Vyhodnocení povodní v květnu a červnu 2010. Souhrnná zpráva, Výzkumný ústav vodohospodářský T G Masaryka, vvi:165

  • Tichavský R, Šilhán K, Tolasz R (2017) Tree ring-based chronology of hydro-geomorphic processes as a fundament for identification of hydro-meteorological triggers in the Hrubý Jeseník Mountains (Central Europe). Sci Total Environ 579:1904–1917

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick ØB (2013) Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province Vietnam. Nat Hazards 66(2):707–730

    Article  Google Scholar 

  • Vallet A, Varron D, Bertrand C, Fabbri O, Mudry J (2016) A multi-dimensional statistical rainfall threshold for deep landslides based on groundwater recharge and support vector machines. Nat Hazards 84(2):821–849

    Article  Google Scholar 

  • Varnes DJ (1996) Landslides: investigation and mitigation. Special report 274. National Academy Press, Washington DC, pp 36–75

  • Vilímek V, Klimeš J, Vlčko J, Carreño R (2006) Catastrophic debris flows near Machu Picchu village (Aguas Calientes) Peru. Environ Geol 50:1041–1052

    Article  Google Scholar 

  • Wieczoreck GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains California. Geol Soc Am Rev Eng Geol VII:93–104

    Article  Google Scholar 

  • Wieczorek GF (1996) Landslide triggering mechanisms. In: Turner KA, Schuster RL (eds) Landslides: investigations and mitigation transportation research board. National Academy Press, Washington D.C., pp 76–88

    Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazard and related phenomena. Springer, Berlin, Heidelberg, pp 325–362

    Chapter  Google Scholar 

  • Záruba Q, Mencl V (1969) Landslides and their control. Elseiver-Academia Prague, Amsterdam, p 214

    Google Scholar 

Download references

Acknowledgements

The study was supported by the Grant Agency of Charles University in Prague, the Czech Republic (GAUK 425911/2011); by long-term conceptual development research organisation RVO: 67985891; and it was performed in the framework of the World Centre of Excellence on Landslide Risk Reduction, supported by the Czech national project Inter-Excellence (Inter-Vector, No. LTV19). We are grateful to the Czech Hydrometeorological Institute and Ondřej Ledvinka for the provision and preparation of rainfall data. Special thanks go to Jiří Řehoř for his assistance in the rainfall gauge installation and fieldwork, as well as data analysis support. We also would like to thank Martin Knápek for his fieldwork and technical support and Mr. and Mrs. Matyščák for their pleasant support in the study area and their permission to install the rain gauge on their property. We would like to express our gratitude to two anonymous reviewers for their insightful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Smolíková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolíková, J., Hrbáček, F., Blahůt, J. et al. Analysis of the rainfall pattern triggering the Lemešná debris flow, Javorníky Range, the Czech Republic. Nat Hazards 106, 2353–2379 (2021). https://doi.org/10.1007/s11069-021-04546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04546-7

Keywords

Navigation