Skip to main content
Log in

Removal of analgesics from aqueous solutions onto montmorillonite KSF

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 03 May 2021

This article has been updated

Abstract

Due to increasing consumption of analgesic drugs associated with their occurrence in wastewater, it is necessary to pay attention to find new accessible types of sorbents for effective drug removal. The objective of this work is the assessment of ability of commercial montmorillonites for the removal of drugs from aqueous solutions since these inexpensive materials exhibit both adsorption and ion exchange properties as well as environmental stability. The commercial montmorillonite KSF, primarily used as acidic catalyst, was used in both unmodified and cetyltrimethylammonium bromide (CTAB) modified form as potential sorbent for three analgesics: paracetamol (PAR), ibuprofen (IBU) and diclofenac (DC) from aqueous solutions. The samples were characterized by X-ray fluorescence (XRFS), X-ray powder diffraction (XRD), simultaneous thermogravimetry and differential thermal analysis (TG/DTA) and high-performance liquid chromatography (HPLC). XRD confirmed the intercalation of CTAB into the montmorillonite structure with the increasing of basal spacing. Thermal analysis also determined the presence of CTAB associated with increasing of the hydrophobicity accompanied by a decrease in dehydration temperature. Also, due to surfactant modification, the temperature of constitution water removal decreased. Adsorption experiments were carried out in a batch mode with different initial concentration of paracetamol, ibuprofen and diclofenac solutions. Montmorillonite samples especially in organically modified form demonstrated sufficient sorption ability of pharmaceuticals from aqueous solutions in the order diclofenac > ibuprofen > paracetamol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Lorphensri O, Sabatini DA, Kibbey TCG, Osathaphan K, Saiwan Ch. Sorption and transport of acetaminophen, 17α-ethynyl estradiol, nalidixic acid with low organic content aquifer sand. Water Res. 2007;41:2180–8.

    Article  CAS  PubMed  Google Scholar 

  2. Martucci A, Pasti L, Marchetti N, Cavazzini A, Dondi F, Alberti A. Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Micropor Mesopor Mat. 2012;148:174–83.

    Article  CAS  Google Scholar 

  3. Lozano-Morales V, Gardi I, Nir S, Undabeytia T. Removal of pharmaceuticals from water by clay-cationic starch sorbents. J Clean Prod. 2018;190:703–11.

    Article  CAS  Google Scholar 

  4. Salihi EC, Mahramanlioglu M. Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Appl Clay Sci. 2014;101:381–9.

    Article  Google Scholar 

  5. Nourmoradi H, Avazpour M, Ghasemian N, Heidari M, Moradnejadi K, Khodarahmi F, Javaheri M, Mohammadi MF. Surfactant modified montmorillonite as a low cost adsorbent for 4-chlorophenol: Equilibrium, kinetic and thermodynamic study. J Taiwan Inst Chem Eng. 2016;59:244–51.

    Article  CAS  Google Scholar 

  6. Dordio AV, Miranda S, Ramalho JPP, Carvalho AJP. Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J Hazard Mater. 2017;323:575–83.

    Article  CAS  PubMed  Google Scholar 

  7. Arya V, Philip L. Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite. Micropor Mesopor Mat. 2016;232:273–80.

    Article  CAS  Google Scholar 

  8. Yu C, Bahashi J, Bi E. Mechanisms and quantification of adsorption of three anti-inflammatory pharmaceuticals onto goethite with/without surface-bound organic acids. Chemosphere. 2019;222:593–602.

    Article  CAS  PubMed  Google Scholar 

  9. Kyzas GZ, Fu J, Lazaridis NK, Bikiaris DN, Matis KA. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J Mol Liq. 2015;209:87–93.

    Article  CAS  Google Scholar 

  10. Nafees M, Waseem A. Organoclays as Sorbent Material for Phenolic Compounds: A Review. Clean-Soil Air Water. 2014;42:1500–8.

    Article  CAS  Google Scholar 

  11. Martucci A, Pasti L, Marchetti N, Cavazzini A, Dondi F, Alberti A. Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Micropor Mesopor Mat. 2012;148(1):174–83.

    Article  CAS  Google Scholar 

  12. Alvarez-Torrellas S, Peres JA, Gil-Alvarez V, Ovejero G, Garcia J. Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem Eng J. 2017;320:319–29.

    Article  CAS  Google Scholar 

  13. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl Clay Sci. 2016;123:239–58.

    Article  CAS  Google Scholar 

  14. Jiang JQ, Zeng Z. Comparison of modified montmorillonite adsorbents Part II: The effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere. 2003;53:53–62.

    Article  CAS  PubMed  Google Scholar 

  15. Sun K, Shi Y, Chen H, Wang X, Li Z. Extending surfactant-modified 2:1 clay minerals for the uptake and removal of diclofenac from water. J Hazard Mater. 2017;323:567–74.

    Article  CAS  PubMed  Google Scholar 

  16. Moyo F, Tandlich R, Wilhelmi BS, Balaz S. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. Int J Env Res Pub He. 2014;11:5020–48.

    Article  Google Scholar 

  17. Thiebault T, Boussafir M. Adsorption mechanism of psychoactive drugs onto montmorillonite. J Colloid Interf Sci. 2019;30:100183.

    Article  CAS  Google Scholar 

  18. Liu Y, Dong Ch, Wei H, Yuan W, Li K. Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): Kinetics, equilibrium and mechanism. Appl Clay Sci. 2015;118:301–7.

    Article  CAS  Google Scholar 

  19. McGinity JW, Lach JL. In vitro adsorption of various pharmaceuticals to montmorillonite. J Pharm Sci. 1976;65(6):896–902.

    Article  CAS  PubMed  Google Scholar 

  20. Chun Y, Sheng G, Boyd SA. Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clay Clay Miner. 2003;51(1):415–20.

    Article  CAS  Google Scholar 

  21. Whitthuhn B, Klauth P, Klumpp E. Organoclays for aquifer bioremediation: Adsorption of chorbenzene on organoclays and its degradation. Water Air Soil Poll. 2006;6:317–29.

    Article  Google Scholar 

  22. Vasquez A, Lopez M, Kortaberria G, Martin L, Mondragon I. Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Appl Clay Sci. 2008;41:24–36.

  23. Subbareddy CV, Subashini R, Sumathi S. Montmorillonite-KSF mediated one step synthesis of pyranochromene derivatives. J Mol Struct. 2018;1171:747–54.

    Article  CAS  Google Scholar 

  24. Chankeshwara SV, Chakraborti AK. Montmorillonite K 10 and montmorillonite KSF as new and reusable catalysts for conversion of amines to N-tert-butylcarbamates. J Mol Catal A-Chem. 2006;253:198–202.

    Article  CAS  Google Scholar 

  25. Yadav JS, Reddy BVS, Madhavi AV. Montmorillonite KSF clay as novel and recyclable heterogeneous solid acid for the conversion of d-glycals into furan diol. J Mol Catal A-Chem. 2005;226(2):213–4.

    Article  CAS  Google Scholar 

  26. Yin WP, Shi M. Nitration of phenolic compounds by metal-modified montmorillonite KSF. Tetrahedron. 2005;61(46):10861–7.

    Article  CAS  Google Scholar 

  27. Moronta A, Ferrer V, Quero J, Arteaga G, Choren E. Influence of preparation method on the catalytic properties of acid-activated tetramethylammonium-exchanged clays. Appl Catal A-GEN. 2002;230(1–2):127–35.

    Article  CAS  Google Scholar 

  28. Zatta L, Ramos LP, Wypych F. Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid. J Oleo Sci. 2012;61(9):497–504.

    Article  CAS  PubMed  Google Scholar 

  29. Pentrak M, Hronsky V, Palkova H, Uhlik P, Komadel P, Madejova J. Alternation of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: A combined XRD, FTIR, MAS NMR and AES study. Appl Clay Sci. 2018;163:204–13.

    Article  CAS  Google Scholar 

  30. PubChem - U.S. National Library of Medicine. Available on line: https://pubchem.ncbi.nlm.nih.gov (13 July 2020).

  31. Chauhan M, Saini VK, Suthar S. Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J Clean Prod. 2020;258:1–11.

    Article  Google Scholar 

  32. Krajisnik D, Dakovic M, Milojevic M, Malenovic A, Kragovic M, Bogdanovic DB, Dondur V, Milic J. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloid Surface B. 2011;83:165–72.

    Article  CAS  Google Scholar 

  33. Thiebault T, Boussafir M, Le Forestier L, Le Milbeau C, Monnin L, Guegan R. Competitive adsorption of a pool of pharmaceuticals onto a raw clay mineral. RSC Adv. 2016;6(69):65257–65.

    Article  CAS  Google Scholar 

  34. Ritz M, Vaculikova L, Kupkova J, Plevova E, Bartonova L. Different level of fluorescence in Raman spectra of montmorillonites. Vib Spectrosc. 2016;84:7–15.

    Article  CAS  Google Scholar 

  35. Dellisanti F, Minguzzi V, Valdre G. Thermal and structural properties of Ca-rich Montmorillonite mechanically deformed by compaction and shear. Appl Clay Sci. 2006;31:282–9.

    Article  CAS  Google Scholar 

  36. Hrachova J, Komadel P, Fajnor VŠ. Sorption of paracetamol onto biomaterials. Mater Lett. 2007;61:3361–5.

    CAS  Google Scholar 

  37. Spessato L, Bedin KC, Cazetta AL, Souza IPAF, Duarte VA, Crespo LHS, Silva MC, Pontes RM, Almeida VC. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J Hazard Mater. 2019;371:499–505.

    Article  CAS  PubMed  Google Scholar 

  38. Davila-Estrada M, Ramirez-Garcia JJ, Solache-Rios MJ, Gallegos-Perez JL. Kinetic and Equilibrium Sorption Studies of Ceftriaxone and Paracetamol by Surfactant-Modified Zeolite. Water Air Soil Poll. 2018;229:123.

    Article  Google Scholar 

  39. Ferchichi M, Dhaouadi H. Sorption of paracetamol onto biomaterials. Water Sci Technol. 2016;74(1):287–94.

    Article  CAS  PubMed  Google Scholar 

  40. Lorphensri O, Intravijit J, Sabatini DA, Kibbey TC, Osathaphan K, Saiwan C. Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium. Water Res. 2006;40(7):1481–91.

    Article  CAS  PubMed  Google Scholar 

  41. Praus P, Turicova M, Studentova S, Ritz M. Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J Colloid Interf Sci. 2006;304:29–36.

    Article  CAS  Google Scholar 

  42. Zha S, Zhou Y, Jin X, Chen Z. The removal of amoxicillin from wastewater using organobentonite. J Environ Manage. 2013;129:569–76.

    Article  CAS  PubMed  Google Scholar 

  43. Praus P, Veteska M, Pospisil M. Adsorption of phenol and aniline on natural and organically modified montmorillonite: experiment and molecular modelling. Mol Simul. 2011;37(11):964–74.

    Article  CAS  Google Scholar 

  44. Zhang L. Pyrolysis and its mechanism of organomontmorillonite (OMMT) influenced by different functional groups. J Therm Anal Calorim. 2019;137:1–10.

    Article  Google Scholar 

  45. Thiebault T, Guegan R, Boussafir M. Adsorption mechanism of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. J Colloid Interf Sci. 2015;453:1–8.

    Article  CAS  Google Scholar 

  46. Alshameri A, He H, Zhu J, Xi Y, Zhu R, Ma L, Tao Q. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Appl Clay Sci. 2018;159:83–93.

    Article  CAS  Google Scholar 

  47. Barreca S, Orecchio S, Pace A. The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: Isothermal and kinetic studies. Appl Clay Sci. 2014;99:220–8.

    Article  CAS  Google Scholar 

  48. Jaynes WF, Boyd SA. Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clay Clay Miner. 1991;39(4):428–36.

    Article  CAS  Google Scholar 

  49. Bhattacharyya KG, SenGupta S, Sarma GK. Interactions of the dye, Rhodamine B with kaolinite and montmorillonite in water. Appl Clay Sci. 2014;99:7–17.

    Article  CAS  Google Scholar 

  50. Landry KA, Sun P, Huang ChH, Boyer TH. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Res. 2015;68:510–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Plevova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallova, S., Plevova, E., Smutna, K. et al. Removal of analgesics from aqueous solutions onto montmorillonite KSF. J Therm Anal Calorim 147, 1973–1981 (2022). https://doi.org/10.1007/s10973-021-10591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10591-y

Keywords

Navigation