Skip to main content
Log in

Thermal behaviour of glazed ceramic bodies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behaviour of glazed ceramic bodies was studied using three different thermal analysis techniques, dilatometry, thermomechanical analysis and differential thermal analysis. The data of relative expansions obtained through these analyses were used to calculate stress relations within two-component systems consisting of the glaze and ceramic body. The investigation also aimed to determine the long-term stability of glazed ceramic products and identify defect growth or degradation due to corrosive effects of the surrounding environment. The results of thermal analysis measurements showed that the values of thermal expansion coefficient, glass transition temperature Tg, set point Tn and deformation temperature Td increase slightly with growing heating rates. However, the measurements showed that heating rate does not affect stress relations within glaze–ceramic body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Taylor JR, Bull AC. Ceramics glaze technology. 1st ed. Oxford: Pergamon Press; 1986. ISBN 0-08-033466-0.

    Google Scholar 

  2. Kavanová M, Kloužková A, Kloužek J. Characterization of the interaction between glazes and ceramic bodies. Ceram Silik. 2017;61(3):267–75. https://doi.org/10.13168/cs.2017.0025.

    Article  CAS  Google Scholar 

  3. Kloužková A, Kavanová M, Kohoutková M, Zemenová P, Dragoun Z. Identification of causes of degradation of Gothic ceramic tiles by thermal analyses. J Therm Anal Calorim. 2016;125(3):1311–8. https://doi.org/10.1007/s10973-016-5488-5.

    Article  CAS  Google Scholar 

  4. Harman CG. Suggestions for solution of difficult glaze-fit problems. J Am Ceram Soc. 1944;27(8):231–3. https://doi.org/10.1111/j.1151-2916.1944.tb14898.x.

    Article  CAS  Google Scholar 

  5. Eppler RA, Obstler M. Understanding glazes. 1st ed. USA: The American Ceramic Society; 2005. ISBN 1-57498-222-2.

    Google Scholar 

  6. Hanykýř V, Kutzendörfer J. Technologie keramiky. 2nd ed. Praha: Silikátový svaz; 2010. ISBN 978-80-86821-48-1.

    Google Scholar 

  7. Peterson M, Bernardin AM, Kuhnen NC, Riella HG. Evaluation of the steger method in the determination of ceramic-glaze joining. Mater Sci Eng A. 2007;466(1–2):183–6. https://doi.org/10.1016/j.msea.2007.02.046.

    Article  CAS  Google Scholar 

  8. Schurecht HG. Fitting glazes to ceramic bodies. J Am Ceram Soc. 1943;26(3):93–8. https://doi.org/10.1111/j.1151-2916.1943.tb15195.x.

    Article  CAS  Google Scholar 

  9. Tandon R, Green DJ. Residual stress determination using strain gage measurements. J Am Ceram Soc. 1990;73(9):2628–33. https://doi.org/10.1111/j.1151-2916.1990.tb06738.x.

    Article  CAS  Google Scholar 

  10. Blakely AM. Life history of a glaze: II, measurement of stress in a cooling glaze. J Am Ceram Soc. 1938;21(7):243–51. https://doi.org/10.1111/j.1151-2916.1938.tb15772.x.

    Article  CAS  Google Scholar 

  11. Johnson AL. Stresses in porcelain glazes. J Am Ceram Soc. 1939;22(1–12):363–6. https://doi.org/10.1111/j.1151-2916.1939.tb19481.x.

    Article  CAS  Google Scholar 

  12. Mattyasovszky-Zsolnay LI. Delayed thermal contraction and crazing of ceramic glazes. J Am Ceram Soc. 1946;29(7):200–3. https://doi.org/10.1111/j.1151-2916.1946.tb11580.x.

    Article  CAS  Google Scholar 

  13. Morrell R. Application of thermodilatometry to ceramic science. Anal Proc. 1981;18(10):430–50. https://doi.org/10.1039/AP9811800430.

    Article  Google Scholar 

  14. Sighinolfi D. Experimental study of deformations and state of tension in traditional ceramic materials. Mater Ceram Ceram Mater. 2011;63(2):226–32.

    Google Scholar 

  15. Oujiří F. Napěťové vztahy v systému střep-glazura granilie. Zpravodaj Silikátového svazu. 2005;2:10–20.

    Google Scholar 

  16. Plešingerová B, Klapáč M, Kovalčíková M. Moisture expansion of porous biscuit bodies-reason of glaze cracking. Ceram Silik. 2002;46(4):159–65.

    Google Scholar 

  17. Kingery WD. Factors affecting thermal stress resistance of ceramic materials. J Am Ceram Soc. 1955;38(1):3–15.

    Article  Google Scholar 

  18. Pabst W, Gregorová E, Černý M. Isothermal and adiabatic Young’s moduli of alumina and zirconia ceramics at elevated temperatures. J Eur Ceram Soc. 2013;33(15–16):3085–93. https://doi.org/10.1016/j.jeurceramsoc.2013.06.012.

    Article  CAS  Google Scholar 

  19. Pabst W, Gregorová E, Uhlířová T, Musilová A, Andelová Z. Elastic properties of porous alumina, zirconia and composite ceramics. Key Eng Mater. 2014;592–593:618–21. https://doi.org/10.4028/www.scientific.net/KEM.592-593.618.

    Article  Google Scholar 

  20. Gregorová E, Pabst W, Nečina V, Uhlířová T, Diblíková P. Young’s modulus evolution during heating, re-sintering and cooling of partially sintered alumina ceramics. J Eur Ceram Soc. 2019;39(5):1893–9. https://doi.org/10.1016/j.jeurceramsoc.2019.01.005.

    Article  CAS  Google Scholar 

  21. Gregorová E, Pabst W, Musilová A, Camerucci MA, Sandoval ML, Talou MH. High-temperature elastic properties of ceramics in the system MgO–Al2O3–SiO2 measured by impulse excitation. Key Eng Mater. 2014;592–593:696–9. https://doi.org/10.4028/www.scientific.net/KEM.592-593.696.

    Article  CAS  Google Scholar 

  22. Pabst W, Gregorová E, Kloužek J, Kloužková A, Zemenová P, Kohoutková M, Sedlářová I, Lang K, Kotouček M, Nevřivová L, Všianský D. High-temperature Young’s moduli and dilatation behavior of silica refractories. J Eur Ceram Soc. 2016;36(1):209–20. https://doi.org/10.1016/j.jeurceramsoc.2015.09.020.

    Article  CAS  Google Scholar 

  23. Bannier E, García-Ten J, Castellano J, Cantavella V. Delayed curvature and residual stresses in porcelain tiles. J Eur Ceram Soc. 2013;33(3):493–501. https://doi.org/10.1016/j.jeurceramsoc.2012.09.018.

    Article  CAS  Google Scholar 

  24. Cook RL, Brunner CD. Correlation of glaze–body stresses with thermal properties of whiteware bodies. J Am Ceram Soc. 1949;32(12):401–8. https://doi.org/10.1111/j.1151-2916.1949.tb18921.x.

    Article  CAS  Google Scholar 

  25. Eppler RA. Glazing defects and their control. Ceram Eng Sci Proc. 1995;16(3):43–50. https://doi.org/10.1002/9780470314708.ch11.

    Article  CAS  Google Scholar 

  26. Serbena FC, Zanotto ED. Internal residual stresses in glass–ceramics: a review. J Non Cryst Solids. 2012;358(6–7):975–84. https://doi.org/10.1016/j.jnoncrysol.2012.01.040.

    Article  CAS  Google Scholar 

  27. Inada H. Relation of crazing of porcelain and stress in porcelain glaze, and method of rapid determination of stress in porcelain glaze. J Ceram Assoc Jpn. 1977;85(986):487–96. https://doi.org/10.2109/jcersj1950.85.986_487.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the project of the Ministry of Culture Czech Republic DG18P02OVV028 “Technology of Treatment and Identification of Degradation Processes of Ceramic Finds from Hradčany Palaces—Methods of Restoration and Conservation of Porous and Dense Ceramics and Porcelain.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Kolářová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolářová, M., Kloužková, A., Kloužek, J. et al. Thermal behaviour of glazed ceramic bodies. J Therm Anal Calorim 142, 217–229 (2020). https://doi.org/10.1007/s10973-020-09484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09484-3

Keywords

Navigation