Skip to main content

Advertisement

Log in

Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers

  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We present a versatile sol–gel approach for low-phonon nanocrystalline (HoxY1−x)2Ti2O7, x = <0.01, 0.40> exhibiting luminescence within the spectral range 2000–3000 nm. The nanocrystalline structure of (HoxY1−x)2Ti2O7 was studied and the effect of the composition and phonon energy on the luminescence properties was evaluated. Regular distribution of Ho3+ ions inside the pyrochlore crystal lattice was proved leading to a regular increase of the unit cell parameter. The luminescence intensity recorded at 2025 nm reached a maximum for the composition (Ho0.03Y0.96)2Ti2O7. The radiative lifetime recorded at 2025 nm regularly decreased with increasing content of Ho3+ ions inside the pyrochlore lattice from 6.32 to 0.22 ms. The phonon energy of the samples was smaller than 700 cm−1 allowing the luminescence spectral range to be extended up to 2900 nm. Further tailoring of the chemical composition can improve the emission at 2860 nm providing a promising high thermally and chemically stable alternative to conventional fluoride or chalcogenide glasses.

Graphical Abstract

Highlights

  • We present a versatile sol–gel approach to preparing (HoxY1−x)2Ti2O7 x = <0.01, 0.40>.

  • The content of Ho3+ ions in the lattice has a major impact on the luminescence properties.

  • The optimal content of Ho3+ ions to maximize the luminescence intensity is identified.

  • Low phonon energy of (HoxY1−x)2Ti2O7 allows the radiative transition at 2860 nm to be activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fuentes AF, Boulallya K, Maczka M, Hanuza J, Amador U (2005) Synthesis of disordered pyrochlores, A(2)Ti(2)O(7) (A = Y, Gd and Dy), by mechanical milling of constituent oxides. Solid State Sci 7(4 Apr):343–353. https://doi.org/10.1016/j.solidstatesciences.2005.01.002

    Article  CAS  Google Scholar 

  2. Bramwell ST, Gingras MJP (2001) Spin ice state in frustrated magnetic pyrochlore materials. Science 294(5546 Nov):1495–1501. https://doi.org/10.1126/science.1064761

    Article  CAS  Google Scholar 

  3. Jenouvrier P, Fick J, Audier M, Langlet M (2004) Microstructure and photoluminescence properties of sol–gel Y2−xErxTi2O7 thin films. Opt Mater 27(2):131–137. https://doi.org/10.1016/j.optmat.2004.02.023

    Article  CAS  Google Scholar 

  4. Singh BP, Parchur AK, Singh RK, Ansari AA, Singh P, Rai SB (2013) Structural and up-conversion properties of Er3+ and Yb3+ co-doped Y2Ti2O7 phosphors. Phys Chem Chem Phys 15(10):3480–3489. https://doi.org/10.1039/c2cp44195k

    Article  CAS  Google Scholar 

  5. Guo Y, Wang D, Zhao X, Wang F (2016) Fabrication, microstructure and upconversion luminescence of Yb3+/Ln(3+) (Ln=Ho, Er, Tm) co-doped Y2Ti2O7 ceramics. Mater Res Bull 73(Jan):84–89. https://doi.org/10.1016/j.materresbull.2015.08.033

    Article  CAS  Google Scholar 

  6. Vytykacova S et al. (2018) Sol-gel route to highly transparent (Ho0.05Y0.95)(2)Ti2O7 thin films for active optical components operating at 2 μm. Opt Mater Express 78:415–420. https://doi.org/10.1016/j.optmat.2018.02.049

    Article  CAS  Google Scholar 

  7. Jackson SD (2012) Towards high-power mid-infrared emission from a fibre laser. Nat Photon 6(7 Jul):423–431. https://doi.org/10.1038/nphoton.2012.149

    Article  CAS  Google Scholar 

  8. Richardson DJ, Nilsson J, Clarkson WA (2010) High power fiber lasers: current status and future perspectives. J Opt Soc Am B 27(11 Nov):B63–B92

    Article  CAS  Google Scholar 

  9. Tao GM et al. (2015) Infrared fibers. Adv Opt Photon 7(2 Jun):379–458. https://doi.org/10.1364/aop.7.000379

    Article  CAS  Google Scholar 

  10. Varak P, Nekvindova P, Baborak J, Oswald J (2022) Near-infrared photoluminescence properties of Er/Yb- and Ho/Yb-doped multicomponent silicate glass—The role of GeO2, Al2O3 and ZnO, J Non-Crystal Solids, 582. https://doi.org/10.1016/j.jnoncrysol.2022.121457.

  11. Todorov F et al. (2020) Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-μm Spectral Range. Materials 13(22 Nov):5177. https://doi.org/10.3390/ma13225177

    Article  CAS  Google Scholar 

  12. Zhang W et al. (2015) Enhanced 2-5 μm emission in Ho3+/Yb3+ codoped halide modified transparent tellurite glasses. Spectrochim Acta Mol Biomol Spectr 134(Jan):388–398. https://doi.org/10.1016/j.saa.2014.06.010

    Article  CAS  Google Scholar 

  13. Kochanowicz M et al. (2019) Tm3+/Ho3+ co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 μm. Opt Mater Express 9(3 Mar):1450–1458. https://doi.org/10.1364/OME.9.001450

    Article  CAS  Google Scholar 

  14. Florez A, Oliveira SL, Flórez M, Gómez LA, Nunes LAO (2006) Spectroscopic characterization of Ho3+ ion-doped fluoride glass. J Alloys Compounds 418(1 Jul):238–242. https://doi.org/10.1016/j.jallcom.2005.12.088

    Article  CAS  Google Scholar 

  15. Walsh BM, Lee HR, Barnes NP (2016) Mid infrared lasers for remote sensing applications. J Luminescence 169(Jan):400–405. https://doi.org/10.1016/j.jlumin.2015.03.004

    Article  CAS  Google Scholar 

  16. Baltrusaitis J, Schuttlefield J, Jensen JH, Grassian VH (2007) FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water. Phys Chem Chem Phys 9(36):4970–4980. https://doi.org/10.1039/b705189a

    Article  CAS  Google Scholar 

  17. Starukh G, Toscani S, Boursicot S, Spanhel L (2007) Photoactivity of sol-gel derived nitridated ZnxTiyOz-films. Zeitschrift Fur Physikalische Chem Int J Res Phys Chem Chem Phys 221(3):349–360. https://doi.org/10.1524/zpch.2007.221.3.349

    Article  CAS  Google Scholar 

  18. Boyer D, Bertrand-Chadeyron G, Mahiou R (2004) Structural and optical characterizations of YAG: Eu3+ elaborated by the sol-gel process. Opt Mater 26(2 Jul):101–105. https://doi.org/10.1016/j.optmat.2003.11.005

    Article  CAS  Google Scholar 

  19. Mrazek J et al. (2015) Sol-gel synthesis and crystallization kinetics of dysprosium-titanate Dy2Ti2O7 for photonic applications. Mater Chem Phys 168(Nov):159–167. https://doi.org/10.1016/j.matchemphys.2015.11.015

    Article  CAS  Google Scholar 

  20. Mrazek J, Surynek M, Bakardjieva S, Bursik J, Kasik I (2014) Synthesis and crystallization mechanism of europium-titanate Eu2Ti2O7. J Cryst Growth 391(Apr):25–32. https://doi.org/10.1016/j.jcrysgro.2013.12.045

    Article  CAS  Google Scholar 

  21. Milicevic B, Kuzman S, Porobic SJ, Marinovic-Cincovic M, Dramicanin MD (2017) Non-isothermal crystallization kinetics of the heavy-group lanthanide dititanates. Opt Mater 74(Dec):86–92. https://doi.org/10.1016/j.optmat.2017.03.058

    Article  CAS  Google Scholar 

  22. Maczka M et al. (2009) Temperature-dependent studies of the geometrically frustrated pyrochlores Ho2Ti2O7 and Dy2Ti2O7. Phys Rev B 79(21 Jun):537–544. https://doi.org/10.1103/PhysRevB.79.214437

    Article  CAS  Google Scholar 

  23. Ikesue A, Aung YL (2008) Ceramic laser materials. Nat Photon 2(12 Dec):721–727. https://doi.org/10.1038/nphoton.2008.243

    Article  CAS  Google Scholar 

  24. Schweizer T, Samson B, Hector J, Brocklesby W, Hewak D, Payne D (1999) Infrared emission from holmium doped gallium lanthanum sulphide glass. Infrared Phys Technol 40(4 Aug):329–335. https://doi.org/10.1016/S1350-4495(98)00060-7

    Article  CAS  Google Scholar 

  25. Peng B, Izumitani T (1995) Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+. Opt Mater 4(6 Oct):797–810. https://doi.org/10.1016/0925-3467(95)00032-1

    Article  CAS  Google Scholar 

  26. Wang SF et al. (2013) Transparent ceramics: Processing, materials and applications. Prog Solid State Chem 41(1–2 May):20–54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002

    Article  CAS  Google Scholar 

  27. Wang Z, Zhou G, Jiang D, Wang S (2018) Recent development of A(2)B(2)O(7) system transparent ceramics. J Adv Ceramics 7(4 Dec):289–306. https://doi.org/10.1007/s40145-018-0287-z

    Article  CAS  Google Scholar 

  28. Barton I, Matejec V, Mrazek J, Podrazky O, Matousek J (2017) Preparation of Bragg mirrors on silica optical fibers and inner walls of silica capillaries by employing the sol-gel method, and titanium and silicon alkoxides. J Sol-Gel Sci Technol 81(3 Mar):867–879. https://doi.org/10.1007/s10971-016-4222-x

    Article  CAS  Google Scholar 

  29. Matrosova AS et al. 2021 Formation of Gd2O3:Nd3+nanocrystals in silica microcapillary preforms and hollow-core anti-resonant optical fibers, Opt Fiber Technol, 65. https://doi.org/10.1016/j.yofte.2021.102547.

  30. Matejec V et al. (2006) Microstructure fibers for gas detection. Mater Sci Eng C Biomimetic Supramol Syst 26(2–3 Mar):317–321. https://doi.org/10.1016/j.msec.2005.10.043.

    Article  CAS  Google Scholar 

  31. Kasik I et al. (2009) Fiber-optic detection of chlorine in water. Sensors Actuat B Chem 139(1 May):139–142. https://doi.org/10.1016/j.snb.2008.10.064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation, contract N° 22-17604S. XRD work was supported by the Institute of Geology Research Plan RVO67985831.

Author contributions

All authors contributed to the study conception and design. Material preparation was performed by SK and JM. Thermal analysis and FT-IR structural characterization were performed by IB. EDS analyses were performed by IB and YB. Luminescence measurements were performed by SK, PV. XRD analysis was performed by RS. TEM analyses were performed by JB. The first draft of the paper was written by JM and all authors commented on previous versions of the paper. All authors read and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Mrázek.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrázek, J., Kamrádková, S., Buršík, J. et al. Nanocrystalline (HoxY1−x)2Ti2O7 luminophores for short- and mid-infrared lasers. J Sol-Gel Sci Technol 107, 320–328 (2023). https://doi.org/10.1007/s10971-023-06113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06113-x

Keywords

Navigation