Skip to main content
Log in

Do Butterfly Activity Data from Mark-Recapture Surveys Reflect Temporal Patterns?

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Temporal patterns in butterfly behavior should reflect diurnal, seasonal and population-level changes in mate availability. Investment into mating should peak at times when potential mates are at a maximum; at other times, individuals should save energy and focus on maintenance activities. To explore these assumptions, we re-analyzed mark-recapture data containing records of behavior for each handled individual: 15 species, 21 separate datasets, total of 20,828 activity records (13,223 males and 7605 females). We used ordination analysis, with activity categories as response variables and controls for dataset identity and weather effects. Across species, basking and nectaring were prevailing morning activities, while mating peaked at afternoons. With the progressing season, males switched from maintenance behavior to mating activities, whereas opposite trend applied to females. Density predictors (sex ratio, daily population size) revealed that mating concentrated to high densities of the opposite sex and that female oviposition, resting and nectaring increased under low density of males. Exploring mark-recapture data for studying behavioral patterns proved to be fruitful but cannot replace focused observations or experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Alcock J (1996) Timing of mate-locating by males in relation to female activity in the carpenter bee Xylocopa varipuncta (hymenoptera: Apidae). J Insect Behav 9:321–328

    Article  Google Scholar 

  • Baguette M, Convie I, Neve G (1996) Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta Oecol 17:225–232

    Google Scholar 

  • Baguette M, Vansteenwegen C, Convi I, Neve G (1998) Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta Oecol 19:17–24

    Article  Google Scholar 

  • Beck J, Fiedler K (2009) Adult life spans of butterflies (Lepidoptera: Papilionoidea + Hesperioidea): broadscale contingencies with adult and larval traits in multi-species comparisons. Biol J Linn Soc 96:166–184

    Article  Google Scholar 

  • Bergman M, Gotthard K, Wiklund C (2011) Mate acquisition by females in a butterfly: the effects of mating status and age on female mate-locating behaviour. Anim Behav 81:225–229

    Article  Google Scholar 

  • Boggs CL (1997) Dynamics of reproductive allocation from juvenile and adult feeding: radiotracer studies. Ecology 78:192–202

    Article  Google Scholar 

  • Brunzel S (2002) Experimental density-related emigration in the cranberry fritillary Boloria aquilonaris. J Insect Behav 15:739–750

    Article  Google Scholar 

  • Brussard PF, Ehrlich PR (1970) Adult behaviour and population structure in Erebia epipsodea (Lepidoptera: Satyridae). Ecology 51:880–885

    Article  Google Scholar 

  • Casula P, Nichols JD (2003) Temporal variability of local abundance, sex ratio and activity in the Sardinian chalk hill blue butterfly. Oecologia 136:374–382

    Article  PubMed  Google Scholar 

  • Clobert J, Lebreton JD (1985) Dépendance de facteurs de milieu dans les estimations de taux de survie par capture–recapture. Biometrics 41:1031–1037 [in French with English summary]

    Article  Google Scholar 

  • Da XW, Zhang R, Chen GL, Ren QM, Lin YF, Du B (2016) Why do males of Parnassius imperator fight for bare rocks but not the nectar flower during mate selection? Ethology 122:552–560

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG (1988) Hostplant-habitat structure and the evolution of butterfly mate-locating behaviour. Zool J Linn Soc-Lond 94:301–318

    Article  Google Scholar 

  • Doak P, Kareiva P, Kingsolver J (2006) Fitness consequences of choosy oviposition for a time-limited butterfly. Ecology 87:395–408

    Article  PubMed  Google Scholar 

  • Ehl S, Dalstein V, Tull F, Gros P, Schmitt T (2018) Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats? Insect Sci 25:161–171

    Article  PubMed  Google Scholar 

  • Fagerström T, Wiklund C (1982) Why do males emerge before females – protandry as a mating strategy in male and female butterflies. Oecologia 52:164–166

    Article  PubMed  Google Scholar 

  • Fischer K, O'Brien DM, Boggs CL (2004) Allocation of larval and adult resources to reproduction in a fruit-feeding butterfly. Funct Ecol 18:656–663

    Article  Google Scholar 

  • Forsberg J, Wiklund C (1989) Mating in the afternoon – time-saving in courtship and remating by females of a polyandrous butterfly Pieris napi L. Behav Ecol Sociobiol 25:349–356

    Article  Google Scholar 

  • Fric Z, Hula V, Klimova M, Zimmermann K, Konvicka M (2010) Dispersal of four fritillary butterflies within identical landscape. Ecol Res 25:543–552

    Article  Google Scholar 

  • Fric Z, Konvička M (2000) Adult population structure and behaviour of two seasonal generations of the European map butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota lepidopterologica 23:2–25

    Google Scholar 

  • Gotthard K, Nylin S, Wiklund C (2000) Mating opportunity and the evolution of sex-specific mortality rates in a butterfly. Oecologia 122:36–43

    Article  PubMed  CAS  Google Scholar 

  • Guay PJ, Mcleod EM, Cross R, Formby AJ, Maldonado SP, Stafford-Bell RE, St-James-Turner ZN, Robinson RW, Mulder RA, Weston MA (2013) Observer effects occur when estimating alert but not flight-initiation distances. Wildl Res 40:289–293

    Article  Google Scholar 

  • Hardy PB, Dennis RLH (2007) Seasonal and daily shifts in substrate use by settling butterflies: conserving resources for invertebrates has a behavioral dimension. J Insect Behav 20:181–199

    Article  Google Scholar 

  • Harker RJ, Shreeve TG (2008) How accurate are single site transect data for monitoring butterfly trends? Spatial and temporal issues identified in monitoring Lasiommata megera. J Insect Conserv 12:125–133

    Article  Google Scholar 

  • Hirota T, Obara Y (2000) The influence of air temperature and sunlight intensity on mate-locating behavior of Pieris rapae crucivora. Zool Sci 17:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Hughes L, Chang BSW, Wagner D, Pierce NE (2000) Effects of mating history on ejaculate size, fecundity, longevity, and copulation duration in the ant-tended lycaenid butterfly, Jalmenus evagoras. Behav Ecol Sociobiol 47:119–128

    Article  Google Scholar 

  • Ide J-Y (2002) Seasonal changes in the territorial behaviour of the satyrine butterfly Lethe diana are mediated by temperature. J Ethol 20:71–78

    Article  Google Scholar 

  • Ide J-Y (2004) Diurnal and seasonal changes in the mate-locating behaviour of the satyrine butterfly Lethe diana. Ecol Res 19:189–196

    Article  Google Scholar 

  • Ide J-Y, Kondoh M (2000) Male-female evolutionary game on mate-locating behaviour and evolution of mating systems in insects. Ecol Lett 3:433–440

    Article  Google Scholar 

  • Iwasa Y, Obara Y (1989) A game model for the daily activity schedule of the male butterfly. J Insect Behav 2:589–608

    Article  Google Scholar 

  • Kadlec T, Vrba P, Kepka P, Schmitt T, Konvicka M (2010) Tracking the decline of the once-common butterfly: delayed oviposition, demography and population genetics in the hermit Chazara briseis. Anim Conserv 13:172–183

    Article  Google Scholar 

  • Karl I, Heuskin S, Fischer K (2013) Dissecting the mechanisms underlying old male mating advantage in a butterfly. Behav Ecol Sociobiol 67:837–849

    Article  Google Scholar 

  • Kemp DJ, Rutowski RL (2001) Spatial and temporal patterns of territorial mate locating behaviour in Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae). J Nat Hist 35:1399–1411

    Article  Google Scholar 

  • Kimura K, Tsubaki Y (1986) Oviposition schedule of the small white butterfly, Pieris melete Menetries (Lepidoptera: Pieridae). Appl Entomol Zool 21:28–32

    Article  Google Scholar 

  • Kleckova I, Konvicka M, Klecka J (2014) Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J Therm Biol 41:50–58

    Article  PubMed  Google Scholar 

  • Klímová M (2007) Populační struktura a přežívání hnědáska květelového (Melitaea didyma) v Národní přírodní rezervaci Mohelenská hadcová step. Faculty of Science, University of South Bohemia in Ceske Budejovice [In Czech]

  • Konvička M, Beneš J, Kuras T (2002) Microdistribution and diurnal behaviour of two sympatric mountain butterflies (Erebia epiphron and E. euryale): relations to vegetation and weather. Biologia 57:223–233

    Google Scholar 

  • Konvička M, Čížek O, Filipová L, Fric Z, Beneš J, Křupka M, Zámečník J, Dočkalová Z (2005) For whom the bells toll: demography of the last population of the butterfly Euphydryas maturna in the Czech Republic. Biologia 60:551–557

    Google Scholar 

  • Konvicka M, Novak J, Benes J, Fric Z, Bradley J, Keil P, Hrcek J, Chobot K, Marhoul P (2008) The last population of the woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. J Insect Conserv 12:549–560

    Article  Google Scholar 

  • Konvicka M, Zimmermann K, Klimova M, Hula V, Fric Z (2012) Inverse link between density and dispersal distance in butterflies: field evidence from six co-occurring species. Popul Ecol 54:91–101

    Article  Google Scholar 

  • Kuras T, Benes J, Konvicka M (2001) Behaviour and within-habitat distribution of adult Erebia sudetica sudetica, endemic of the Hrubý Jeseník Mts., Czech Republic (Nymphalidae, Satyrinae). Nota Lepidopterologica 24:69–83

    Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals – a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Novotny D, Konvicka M, Fric Z (2012) Can brief marking campaigns provide reliable dispersal estimates? A Nickerl's fritillary (Melitaea aurelia, Lepidoptera: Nymphalidae) case study. Entomol Fennica 23:155–164

    Google Scholar 

  • Odendaal FJ, Iwasa Y, Ehrlich PR (1985) Duration of female availability and its effect on butterfly mating systems. Am Nat 125:673–678

    Article  Google Scholar 

  • Osvath-Ferencz M, Bonelli S, Nowicki P, Peregovits L, Rakosy L, Sielezniew M, Kostro-Ambroziak A, Dziekanska I, Korosi A (2017) Population demography of the endangered large blue butterfly Maculinea arion in Europe. J Insect Conserv 21:411–422

    Article  Google Scholar 

  • Peixoto PEC, Benson WW (2009) Daily activity patterns of two co-occurring tropical satyrine butterflies. J Insect Sci 9:54

    Google Scholar 

  • Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400

    Article  Google Scholar 

  • Rutowski RL (1991) The evolution of male-locating behaviour in butterflies. Am Nat 138:1121–1139

    Article  Google Scholar 

  • Scott JA (1972) Mating of butterflies. J Res Lepidoptera 11:99–127

    Google Scholar 

  • Scott JA (1973) Lifespan of butterflies. J Res Lepidoptera 12:225–230

    Google Scholar 

  • Scott JA (1974) Mate-locating behaviour of butterflies. Am Midl Nat 91:103–117

    Article  Google Scholar 

  • Slamova I, Klecka J, Konvicka M (2011) Diurnal behavior and habitat preferences of Erebia aethiops, an aberrant lowland species of a mountain butterfly clade. J Insect Behav 24:230–246

    Article  Google Scholar 

  • Stutt AD, Willmer P (1998) Territorial defense in speckled wood butterflies: do the hottest males always win? Anim Behav 55:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power. Ithaca. USA. 496 pp

  • Tinbergen N, Meeuse BJD, Boerema LK, Varossieau WW (1942) Die Balz des Samtfalters, Eumenis (=Satyrus) semele (L.). Z Tierpsychologie 5:182–226

    Article  Google Scholar 

  • Trochet A, Legrand D, Larranaga N, Ducatez S, Calvez O, Cote J, Clobert J, Baguette M (2013) Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J Anim Ecol 82:946–955

    Article  PubMed  Google Scholar 

  • Valimaki P, Kaitala A (2006) Does a lack of mating opportunities explain monandry in the green-veined white butterfly (Pieris napi)? Oikos 115:110–116

    Article  Google Scholar 

  • Verner J, Milne KA (1990) Analyst and observer variability in density estimates from spot mapping. Condor 92:313–325

    Article  Google Scholar 

  • Vlasanek P, Hauck D, Konvicka M (2009) Adult sex ratio in the Parnassius mnemosyne butterfly: effects of survival, migration, and weather. Isr J Ecol Evol 55:233–252

    Article  Google Scholar 

  • Vlasanek P, Novotny V (2015) Demography and mobility of three common understory butterfly species from tropical rain forest of Papua New Guinea. Popul Ecol 57:445–455

    Article  Google Scholar 

  • Wahlberg N, Klemetti T, Selonen V, Hanski I (2002) Metapopulation structure and movements in five species of checkerspot butterflies. Oecologia 130:33–43

    Article  PubMed  Google Scholar 

  • Watt WB, Boggs CV (2003) Synthesis – butterflies as model systems in ecology in evolution – present and future. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. The University of Chicago press. Chicago, pp 603–613

    Google Scholar 

  • White GC, Burnham KP (1999) Program mark: survival estimation from populations of marked animals. Bird Study 46:120–139

    Article  Google Scholar 

  • Wickman PO (1985) The influence of temperature on the territorial and mate locating behaviour of the small heath butterfly, Coenonympa pamphilus (L.) (Lepidoptera: Satyridae). Behav Ecol Sociobiol 16:233–238

    Article  Google Scholar 

  • Wiklund C (1982) Behavioral shift from courtship solicitation to male avoidance in female ringlet butterfly (Aphantopus hyperanthus) after copulation. Anim Behav 30:790–793

    Article  Google Scholar 

  • Wikstrom L, Milberg P, Bergman KO (2009) Monitoring of butterflies in semi-natural grasslands: diurnal variation and weather effects. J Insect Conserv 13:203–211

    Article  Google Scholar 

  • Zimmermann K, Blazkova P, Cizek O, Fric Z, Hula V, Kepka P, Novotny D, Slamova I, Konvicka M (2011) Demography of adults of the marsh fritillary butterfly, Euphydryas aurinia (Lepidoptera: Nymphalidae) in the Czech Republic: patterns across sites and seasons. Eur J Entomol 108:243–254

    Article  Google Scholar 

  • Zimmermann K, Fric Z, Filipová L, Konvička M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): how to be a succesful wetland butterfly. Eur J Entomol 102:699–706

    Article  Google Scholar 

  • Zimmermann K, Konvicka M, Fric Z, Cihakova V (2009) Demography of a common butterfly on humid grasslands: Argynnis aglaja (Lepidoptera: Nymphalidae) studied by mark-recapture. Pol J Ecol 57:715–727

    Google Scholar 

Download references

Acknowledgements

Many friends and colleagues helped with the mark-recapture studies reanalyzed here. Limited space and fading memory prevent naming them all. Weather data was provided by the Czech Hydro-Meteorological Institute (Brno, České Budějovice, Hradec Králové, Plzeň and Ústí nad Labem offices). Funding originated from numerous sources over the course of years; finalizing the paper was supported by the Grant Agency of the Czech Republic (GA14-33733S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vlašánek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlašánek, P., Fric, Z.F., Zimmermann, K. et al. Do Butterfly Activity Data from Mark-Recapture Surveys Reflect Temporal Patterns?. J Insect Behav 31, 385–401 (2018). https://doi.org/10.1007/s10905-018-9686-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-018-9686-9

Keywords

Navigation