Skip to main content
Log in

Rheological Model for Describing Viscometric Flows of Melts of Branched Polymers

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An Erratum to this article was published on 01 July 2016

The present paper considers the problem of constructing a rheological constitutive relation for melts of branched polymers with the use of a modified Vinogradov–Pokrovskii rheological model generalized to the case of several noninteracting models, each of which corresponds to the account in the stress tensor of the contribution of a particular polymer fraction and is characterized by its own relaxation time and viscosity. Since the number of model parameters markedly increases thereby, simple dependences of its parameters on the mode number are proposed. On the basis of the obtained model, the nonlinear nonstationary effects at simple shear and uniaxial tensor have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. London, A200, 523–541 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, New York (1994).

    Book  Google Scholar 

  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford, Clarendon (1986).

    Google Scholar 

  4. De Gennes, PG Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca (1979).

    Google Scholar 

  5. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Fluids, Vol. 2, Wiley, New York, (1987).

    Google Scholar 

  6. H. C. Ottinger, A thermodynamically admissible reptation model for fast flows of entangled polymer, J. Rheol., 43, 1461–1493 (1999).

    Article  Google Scholar 

  7. T. C. B. McLeish and R. G. Larson, Molecular constitutive equations for a class of branched polymers: the pom-pom polymer, J. Rheol., 42, 81–110 (1998).

    Article  Google Scholar 

  8. W. M. H. Verbeeten, G. W. M. Peters, and F. P. T. Baaijens, Differential constitutive equations for polymer melt: the extended pom-pom model, J. Rheol., 45, 821–841 (2001).

    Google Scholar 

  9. M. Zatloukal, Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flow, J. Non-Newtonian Fluid Mech., 209, 11–27 (2003).

    MATH  Google Scholar 

  10. J. Remmelgas, G. Harrison, and L. G. Leal, A differential constitutive equation for entangled polymer solutions, J. Non-Newton Fluid, 80, Nos. 2–3, 115–134 (1999).

  11. T. Borg and E. J. Pääkkönen, Linear viscoelastic model for elongational viscosity by control theory, Rheol. Acta, 13, 371–384 (2011).

    Google Scholar 

  12. G. Bishko, T. C. B. McLeish, O. G. Harlen, and R. G. Larson, Theoretical molecular rheology of branched polymers in simple and complex flows: the pom-pom model, Phys. Rev. Lett., 79, No. 12, 2352–2355 (1997).

    Article  Google Scholar 

  13. W. M. H. Verbeeten, G. W. M. Peters, and F. P. T. Baaijens, Differential constitutive equations for polymer melts:the extended pom-pom model, J. Rheol., 45, 823–843 (2001).

    Article  Google Scholar 

  14. V. A. Kargin and G. A. Slonimskii, On the deformation of amorphous-liquid linear polymers, Dokl. Akad. Nauk SSSR, 62, No. 2, 239–242 (1948).

    Google Scholar 

  15. P. E. A. Rouse, Theory of the linear viscoelastic properties of dilute solutions of cooling polymers, J. Chem. Phys., 21, No. 7, 1271–1280 (1953).

    Article  Google Scholar 

  16. W. W. Graessley, The entanglement concept in polymer rheology, Adv. Polym. Sci., 16, 1–179 (1974).

    Article  Google Scholar 

  17. V. N. Pokrovskii and G. V. Pyshnograi, Simple forms of the constitutive equation of concentrated solutions and melts of polymers as a corollary of the molecular theory of viscoelasticity, Izv. Akad. Nauk SSSR, Mekh Zhidk. Gaza, No. 1, 71–77 (1991).

  18. V. N. Pokrovskii and V. S. Volkov, Computation of the relaxation times and dynamic modulus of linear polymers on the basis of the monomolecular approximation with self-consistency (a new approach to the theory of viscoelasticity of linear polymers), Vysokomol. Soedin., A20, No. 12, 2700–2706 (1978).

    Google Scholar 

  19. V. N. Pokrovskii, Dynamics of loosely bound linear macromolecules, Usp. Fiz. Nauk, 162, No. 5, 87–121 (1992).

    Article  MathSciNet  Google Scholar 

  20. Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, and K. B. Koshelev, Introduction to the Mesoscopic Theory of Fluid Polymer Systems [in Russian], Izd. AltGPA, Barnaul (2012).

  21. G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, Yu. N. Karnet, and I. F. Obraztsov, Constitutive equation of nonlinear viscoelastic (polymer) media in the zeroth approximation for parameters of the molecular theory and corollary for shear and tension, Dokl. Akad. Nauk, 339, No. 5, 612–615 (1994).

    Google Scholar 

  22. G. V. Pyshnograi, A. S. Gusev, and V. N. Pokrovskii, Constitutive equations for weakly entangled linear polymers, J. Non-Newtonian Fluid Mech., 163, Nos.1–3, 17–28 (2009).

  23. I. É. Golovicheva, S. A. Zinovich, and G. V. Pyshnograi, Influence of molecular mass on the shear and longitudinal viscosity of linear polymers, Prikl. Mekh. Tekh. Fiz., 41, No. 2, 154–160 (2000).

    MATH  Google Scholar 

  24. A. S. Gusev, M. A. Makarova, and G. V. Pyshnograi, Mesoscopic equation of state of polymer media and description of the dynamic characteristics based on it, J. Eng. Phys. Thermophys., 78, No. 5, 892–898 (2005).

    Article  Google Scholar 

  25. Al Joda H. N. A., G. L. Afonin, D. A. Merzlikina, P. Filip, R. Pivokonskii, and G. V. Pyshnograi, Modification of the law of internal friction in the mesoscopic theory of fluid polymer media, Mekh. Kompozit. Mater. Konstr., 19, No. 1, 128–140 (2013).

  26. D. A. Merzlikina, P. Filip, R. Pivokonskii, and G. V. Pyshnograi, Multimode rheological model and corollaries for simple shear and tension, Mekh. Kompozit. Mater. Konstr., 19, No. 2, 254–261 (2013).

    Google Scholar 

  27. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd edn., Springer, Dordrecht–Heidelberg–London–New York (2010).

    Book  Google Scholar 

  28. V. H. Rolón-Garrido, R. Pivokonsky, P. Filip, M. Zatloukal, and M. H. Wagner, Modelling elongational and shear rheology of two LDPE melts, Rheol. Acta, 48, 691–697 (2009).

    Article  Google Scholar 

  29. R. Pivokonsky, M. Zatloukal, and P. Filip, On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts, J. Non-Newtonian Fluid Mech., 135, 58–67 (2006).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Pyshnograi.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 3, pp. 643–651, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merzlikina, D.A., Pyshnograi, G.V., Pivokonskii, R. et al. Rheological Model for Describing Viscometric Flows of Melts of Branched Polymers. J Eng Phys Thermophy 89, 652–659 (2016). https://doi.org/10.1007/s10891-016-1423-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1423-7

Keywords

Navigation