Skip to main content
Log in

Efficient microalgae feed production for fish hatcheries using an annular column photobioreactor characterized by a short light path and central LED illumination

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this study, we aimed to set up and test two models of annular-column photobioreactors (AC-PBR 1 and AC-PBR 2) in order to produce microalgae for fish hatcheries. Both models with a different design were characterized by a short light-path and central LED light source providing homogenous illumination of thin culture layer, sufficient mixing, and continuous temperature control guaranteed a stable cultivation regime and high biomass productivity. The AC-PBR 1 is characterized by a culture thickness of 5.5 cm and the maximum irradiance of 1200 µmol photons m−2 s−1 while in AC-PBR 2, the culture layer was decreased to 4.6 cm and the maximum irradiance intensity could reach 1600 µmol photons m−2 s−1. AC-PBR 1 and AC-PBR 2 were compared using the selected microalgae strain Vischeria helvetica (class Eustigmatophyceae) which is a suitable feed source for rotifers further used as a live food for fish larvae. The photosynthetic performance, biomass productivity, pigment content, and fatty acid profile were evaluated. The volumetric productivity under continuous illumination at optimal growth temperature reached 0.16 and 0.33 g DW L−1 day−1, corresponding to an areal productivity of 12.4 and 18.9 g DW m−2 day−1 for AC-PBR 1 and AC-BR2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepúlveda C, Masojídek J (2017) Photobioreactors for the production of microalgae. In: Muñoz R, Gonzalez-Fernandez C (eds) Microalgae-based biofuels and bioproducts: from feedstock cultivation to end-products. Woodhead Publishing, Duxford, pp 1–44

  • Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202

    Article  CAS  PubMed  Google Scholar 

  • Amaral MS, Loures CC, Naves FL, Baeta BEL, Silva MB, Prata AMR (2020) Evaluation of cell growth performance of microalgae Chlorella minutissima using an internal light integrated photobioreactor. J Environ Chem Eng 8:104200

    Article  CAS  Google Scholar 

  • Arkronrat W, Oniam V (2019) Growth performance and production cost of laboratory-scale marine microalgae culture using a light-emitting diode. Songklanakarin J Sci Technol 1093–1100

  • Babaei A, Ranglová K, Malapascua JR, Masojídek J (2017) The synergistic effect of selenium (selenite, –SeO32-) dose and irradiance intensity in Chlorella cultures. AMB Express 7:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Babaei A, Ranglová K, Malapascua JR, Masojídek J (2020) Photobiochemical changes in Chlorella g120 culture during trophic conversion (metabolic pathway shift) from heterotrophic to phototrophic growth regime. J Appl Phycol 32:2807–2818

    Article  CAS  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing, Oxford,  pp 312–351

  • Cañedo JCG, Lizárraga GLL (2016) Considerations for photobioreactor design and operation for mass cultivation of microalgae. In: Thajuddin N, Dhanasekaran D (eds) Algae - Organisms for Imminent Biotechnology. InTech, Rijeka

  • Chini Zittelli G, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15:107–114

    Article  Google Scholar 

  • Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943

    Article  Google Scholar 

  • Choi HJ, Lee JM, Lee SM (2013) A novel optical panel photobioreactor for cultivation of microalgae. Water Sci Technol 67:2543–2548

    Article  CAS  PubMed  Google Scholar 

  • Cuaresma Franco M, Buffing MF, Janssen M, Vílchez Lobato M, Wijffels RH (2012) Performance of Chlorella sorokiniana under simulated extreme winter conditions. J Appl Phycol 24:693–699

    Article  CAS  PubMed  Google Scholar 

  • da Silva Ferreira V, Sant’Anna C (2017) Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol 33:20

    Article  PubMed  Google Scholar 

  • Egbo M, Okoani A, Okoh I (2018) Photobioreactors for microalgae cultivation — an overview. Int J Sci Eng Res 9:65–74

    Google Scholar 

  • Ferreira G, Rios Pinto L, Fregolente L (2019) Microalgal biomass as a source of polyunsaturated fatty acids for industrial application: a mini-review. Chem Eng Trans 74:163–168

    Google Scholar 

  • Figueiredo J, Lin J, Anto J, Narciso L (2012) The consumption of DHA during embryogenesis as an indicative of the need to supply DHA during early larval development: a review. J Aquacult Res Dev 3:5

    Article  Google Scholar 

  • Gonçalves VD, Fagundes-Klen MR, Trigueros DEG, Schuelter AR, Kroumov AD, Módenez AN (2019) Combination of light emitting diodes (LEDs) for photostimulation of carotenoids and chlorophylls synthesis in Tetradesmus sp. Algal Res 43:101649

    Article  Google Scholar 

  • Grant C, Louda J (2010) Microalgal pigment ratios in relation to light intensity: implications for chemotaxonomy. Aquat Biol 11:127–138

    Article  Google Scholar 

  • Han P, Lu Q, Fan L, Zhou W (2019) A review on the use of microalgae for sustainable aquaculture. Appl Sci 9:2377

    Article  CAS  Google Scholar 

  • Hu JY, Sato T (2017) A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energy Convers Manage 133:558–565

    Article  CAS  Google Scholar 

  • Jo CR, Jeong IY, Lee NY, Kim KS, Bryun MW (2006) Synthesis of a novel compound from gallic acid and linoleic acid and its biological functions. Food Sci Biotechnol 15:317–320

    CAS  Google Scholar 

  • Joshi A, Kumari R, Upasani N (2018) Application of algae in cosmetics: an overview. Int J Innovat Res Sci Eng Technol 7:1269–1278

    Google Scholar 

  • Li Z, Sun M, Li Q, Li A, Thang C (2012) Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their β-carotene productions in bubble column photobioreactor. Biotechnol Lett 34:2049–2053

    Article  CAS  PubMed  Google Scholar 

  • Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  • Malapascua JR, Ranglová K, Masojídek J (2019) Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor. Photosynthetica 57:103–112

    Article  CAS  Google Scholar 

  • Masojídek J, Vonshak A, Torzillo G (2010) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer, Dordrecht, pp 277–292

    Chapter  Google Scholar 

  • Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Indust Microbiol Biotechnol 38:307–317

    Article  Google Scholar 

  • Masojídek J, Ranglová K, Lakatos GE, Silva Benavides AM, Torzillo G (2021) Variables governing photosynthesis and growth in microalgae mass cultures. Processes 9:820

    Article  Google Scholar 

  • Masojídek J, Torzillo G (2014) Mass cultivation of freshwater microalgae. On-line database Earth Systems and Environmental Sciences, Elsevier, 2nd edition, 13 p

  • Nogueira N, Nascimento FJA, Cunha C, Cordeiro N (2020) Nannochloropsis gaditana grown outdoors in annular photobioreactors: operation strategies. Algal Res 48:101913

    Article  Google Scholar 

  • Ogbonna JC, Yada H, Masui H, Tanaka H (1996) A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J Ferment Bioeng 82:61–67

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Ranglová K, Lakatos GE, Manoel JAC, Grivalský T, Masojídek J (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol 64:615–625

    Article  Google Scholar 

  • Ranglová K (2020) Cultivation, monitoring and application of microalgae cultures. PhD thesis, University of South Bohemia in České Budějovice, 174 p

  • Ratomski P, Hawrot-Paw M (2021) Production of Chlorella vulgaris biomass in tubular photobioreactors during different culture conditions. Appl Sci 11:3106

    Article  Google Scholar 

  • Remias D, Nicoletti C, Krennhuber K, Möderndorfer B, Nedbalová L, Procházková L (2020) Growth, fatty, and amino acid profiles of the soil alga Vischeria sp. E71.10 (Eustigmatophyceae) under different cultivation conditions. Folia Microbiol 65:1017–1023

    Article  CAS  Google Scholar 

  • Sforza E, Enzo M, Bertucco A (2014) Design of microalgal biomass production in a continuous photobioreactor: an integrated experimental and modeling approach. Chem Eng Res Design 92:1153–1162

    Article  CAS  Google Scholar 

  • Silva Benavides AM, Ranglová K, Malapascua JR, Masojídek J, Torzillo G (2017) Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond. Algal Res 28:48–56

    Article  Google Scholar 

  • Stanier RY, Deruelles J, Rippka R, Herdman M, Waterbury JB (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sukačová K, Lošák P, Brummer V, Máša V, Vícha D, Zavřel T (2021) Perspective design of algae photobioreactor for greenhouses—a comparative study. Energies 14:1338

    Article  Google Scholar 

  • Taisir M, Teo CL, Idris A, Yusuf AM (2016) Cultivation of Nannochloropsis sp. using narrow beam angle light emitting diode in an internally illuminated photobioreactor. Bioresour Bioproc 3:35

    Article  Google Scholar 

  • Tredici M (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell Science, Oxford, pp 178–214

    Google Scholar 

  • Vonshak A (2002) Outdoor mass production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 79–100

    Google Scholar 

  • Wan Afifudeen C-L, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS (2021) Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Sci Rep 11:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Yanes-Roca C, Holzer A, Mraz J, Veselý J, Malinovskyi O, Policar T (2020) Improvements on live feed enrichments for Pikeperch (Sander lucioperca) larval culture. Animals 10:401

    Article  PubMed Central  Google Scholar 

  • Zarmi Y, Bel G, Aflalo C (2013) Theoretical analysis of culture growth in flat-plate bioreactors: the essential role of timescales. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd edn. Wiley-Blackwell, Oxford, pp 205–224

    Chapter  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd edn. Wiley-Blackwell, Oxford, pp 225–266

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Soňa Pekařová for technical assistance during experiments. The authors also thank Mr. Jason Dean for language correction.

Funding

This work was supported by Project ATCZ221 “Algae4Fish” Program INTERREG V-A Austria – Czech Republic.

Author information

Authors and Affiliations

Authors

Contributions

Karolína Ranglová contributed to conceptualization, methodology, data curation, formal analysis and writing—original draft preparation, and reviewing and editing. Michal Bureš contributed to technical design, methodology, and investigation. João Câmara Manoel contributed to data curation. Gergely Ernő Lakatos contributed to data curation. Jiří Masojídek contributed to technical design, supervision, and writing – reviewing and editing.

Corresponding author

Correspondence to Karolína Ranglová.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranglová, K., Bureš, M., Manoel, J.C. et al. Efficient microalgae feed production for fish hatcheries using an annular column photobioreactor characterized by a short light path and central LED illumination. J Appl Phycol 34, 31–41 (2022). https://doi.org/10.1007/s10811-021-02647-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02647-1

Keywords

Navigation