Skip to main content
Log in

Ideal Gas Heat Capacity and Critical Properties of HFE-Type Engineering Fluids: Ab Initio Predictions of Cpig, Modeling of Phase Behavior and Thermodynamic Properties Using Peng–Robinson and Volume-Translated Peng–Robinson Equations of State

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Hydrofluoroethers (HFEs) represent a new generation of promising engineering fluids for heat transfer or cleaning applications. In this work, quantum chemistry calculations (qcc) were employed to obtain ideal gas heat capacities, Cpig, for the selected HFEs and comparisons were made against the group contribution (GC) methods by Rihani and Doraiswamy, Yoneda, and Joback. Comparison between B3LYP/6-31++ G(d,p) density functional theory (DFT) and Hartree–Fock (HF) methods showed that HF method provides better representation of the available experimental gas-phase speed of sound data for HFE-7000. Critical properties and acentric factors of the selected HFEs were optimized and compared to the other reported values. The Peng–Robinson equation of state (PR EoS) combined with the Cpig correlation, allowing calculation of the ideal gas Helmholtz free energy, was used to model a complete set of thermodynamic properties of the five selected HFEs; namely HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500. The volume-translated (VT) PR EoS was also tested as an alternative. The accuracy of PR EoS for representing the phase behavior and caloric properties of the selected HFEs was analyzed based on the comparison with nearly 3500 experimental data points and a preliminary multiparameter EoS available for HFE-7000. Although relatively simple, but still widely used, PR EoS was found to provide reasonable vapor–liquid predictions for HFEs and, as such, can be used effectively in the design of their various applications. In addition, a vapor pressure correlation and the critical compressibility factor were analyzed from the view of application on various alternative refrigerants such as HFEs and hydrofluoroolefines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a 0 :

Constant of Eq. 20

A 0 :

Parameter as used in Eq. 3, m2·s‒2

B :

Second virial coefficient, m3·kg1

B 0 :

Second acoustic virial coefficient, m3·kg‒1

c :

Light speed in vacuum, m·s1

C :

Third virial coefficient, m6·kg2

C 0 :

Third acoustic virial coefficient, m6·kg‒2

C p ig :

Ideal gas isobaric heat capacity, J·(mol·K)‒1

C v :

Constant volume heat capacity, J·(mol·K)‒1

D :

Fourth virial coefficient, m9·kg3

h :

Planck constant, 6.6260755 × 1034 J·s

h 0 :

Enthalpy at reference point, J·mol1

j, k, l, m :

Parameters in Eq. 17

k B :

Boltzmann constant, 1.380658 × 1023 J·K1

M :

Parameter in Eq. 12

MW :

Molecular weight, g·mol‒1

O :

Riedel constant, Eq. 18

P :

Pressure, Pa

R :

Universal gas constant, J·(mol·K)‒1

s 0 :

Entropy at reference point, J·(mol·K)1

T :

Temperature, K

V :

Molar volume, m3·mol‒1

W :

Speed of sound, m·s‒1

Y :

Parameter as defined in Eq. 18

Z :

Compressibility factor

ρ :

Density, kg·m‒3

μ :

Joule–Thomson coefficient, K·MPa‒1

\(\Theta_{i}\) :

Characteristic temperature of i-th resonating frequency mode, K

ν i :

i-th vibrational frequency, cm‒1

ω :

Acentric factor

χ :

Critical exponent in Eq. 12

br:

Reduced boiling point

c:

Critical

r:

Reduced property

L:

Liquid

V:

Vapor

EoS:

Result obtained from equation of state

exp:

Experimental

ig:

Ideal gas

sat:

Saturation

vap:

Vapor

AARD:

Average absolute relative deviation, %

CFC:

Chlorofluorocarbon

DFT:

Density functional theory

EoS:

Equation of state

GC:

Group contribution

GWP:

Global warming potential

HF:

Hartree–Fock

HFC:

Hydrofluorocarbon

HCFC:

Hydrochlorofluorocarbon

HFE:

Hydrofluoroether

HFO:

Hydrofluoroolefine

J-T:

Joule–Thomson coefficient, K·MPa‒1

PFC:

Perfluorocarbon

PR:

Peng–Robinson

VT:

Volume-translated

References

  1. U.S. Environmental Protection Agency, Clean Air Act (1990). Retrieved August 12, 2021, from https://www.epa.gov/clean-air-act-overview.

  2. European Environmental Agency, EU Regulation No 517/2014 on Fluorinated Greenhouse Gases (2020). Retrieved July 27, 2021, from http://data.europa.eu/eli/reg/2014/517/oj

  3. Ø. Hodnebrog, M. Etminan, J.S. Fuglestvedt, G. Marston, G. Myhre, C.J. Nielsen, K.P. Shine, T.J. Wallington, J. Rev. Geophys. 51, 300 (2013)

    Article  ADS  Google Scholar 

  4. A.J. Sicard, R.T. Baker, Chem. Rev. 120, 9164 (2020)

    Article  Google Scholar 

  5. I. Bravo, Y. Diaz-de-Mera, A. Aranda, K. Smith, K.P. Shine, G. Marston, Phys. Chem. Chem. Phys. 12, 5115 (2010)

    Article  Google Scholar 

  6. V. Vinš, A. Aminian, D. Celný, M. Součková, J. Klomfar, M. Čenský, O. Prokopová, Int. J. Refrig. 131, 956 (2021)

    Article  Google Scholar 

  7. Y. Zhou, E.W. Lemmon, E.W., Equations of State for RE245cb2, RE347mcc, RE245fa2, and R1216, to be submitted to J. Phys. Chem. Ref. Data (2018).

  8. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, REFPROP—Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, version 10.0 (2018).

  9. Y. Kano, Y. Kayukawa, K. Fujii, H. Sato, J. Chem. Eng. Data 58, 2966 (2013)

    Article  Google Scholar 

  10. P. Blowers, K.F. Tetrault, Y. Trujillo-Morehead, Ind. Eng. Chem. Res. 46, 6600 (2007)

    Article  Google Scholar 

  11. A. Demenay, J. Glorian, P. Paricaud, L. Catoire, Int. J. Refrig. 79, 207 (2017)

    Article  Google Scholar 

  12. R.A. Perkins, M.O. McLinden, J. Chem. Thermodyn. 91, 43 (2015)

    Article  Google Scholar 

  13. T. Lafitte, F. Plantier, M.M. Pineiro, J.-L. Daridon, D. Bessieres, Ind. Eng. Chem. Res. 46, 6998 (2007)

    Article  Google Scholar 

  14. J. Vijande, M.M. Pineiro, D. Bessieres, H. Saint-Guirons, J.L. Legido, Phys. Chem. Chem. Phys. 6, 766 (2004)

    Article  Google Scholar 

  15. K. Řehák, M. Klajmon, M. Strejc, P. Moravek, J. Chem. Eng. Data 62, 3878 (2017)

    Article  Google Scholar 

  16. S. Swaminathan, D.P. Visco, Ind. Eng. Chem. Res. 44, 4798 (2005)

    Article  Google Scholar 

  17. K.S. Pitzer, D.Z. Lippmann, R.F. Curl, C.M. Huggins, D.E. Petersen, J. Am. Chem. Soc. 77, 3433 (1955)

    Article  Google Scholar 

  18. R. Span, Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)

    Book  Google Scholar 

  19. M.J. Frisch et al., Gaussian 16, Revision C.01 (Gaussian Inc., Wallingford, 2016)

    Google Scholar 

  20. Computational Chemistry Comparison and Benchmark Database (CCCBDB), Released by National Institute of Standards and Technology. http://www.nist.gov, http://srdata.nist.gov/cccbdb/vibscalejust.asp. Accessed 01 Oct 2021

  21. K.G. Joback, R.C. Reid, Chem. Eng. Commun. 57, 233 (1987)

    Article  Google Scholar 

  22. Y. Yoneda, Bull. Chem. Soc. Jpn. 52, 1297 (1979)

    Article  Google Scholar 

  23. D.N. Rihani, L.K. Doraiswamy, Ind. Eng. Chem. Fund. 4, 17 (1965)

    Article  Google Scholar 

  24. 3M, 2015. Product Information-3M™ Novec™ 7200 High-Tech Flüssigkeit, 3M Deutschland GmbH Electronics & Energy Produkte (Dr.Nr. 07-401-07900/04.2014 Index D).

  25. 3M, 2019. Product Information-3M™ Novec™ 7100 High-Tech Flüssigkeit, 3M Deutschland GmbH Electronics & Energy Produkte (Dr. Nr. 1438116/09.2019 Index D).

  26. R. Span, R. Beckmüller, S. Hielscher, A. Jäger, E. Mickoleit, T. Neumann, S.M. Pohl, B. Semrau, M. Thol, TREND—Thermodynamic Reference and Engineering Data 5.0 (Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, Bochum, 2020)

    Google Scholar 

  27. M. Kleiber, R. Joh, VDI-Wärmeatlas, 11. bearbeitete und erweiterte Aufgabe, ch. Berechnungsmethoden für Stoffeigenschaften (pp. 139–174, Springer, Berlin, 2013)

    Google Scholar 

  28. L. Cailletet, E. Mathias, J. Phys. Theor. Appl. 5, 549 (1886)

    Article  Google Scholar 

  29. J.V. Sengers, J.G. Shanks, J. Stat. Phys. 137, 857 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.H. Rausch, L. Kretschmer, S. Will, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 60, 3759 (2015)

    Article  Google Scholar 

  31. M.O. McLinden, R.A. Perkins, E.W. Lemmon, T.J. Fortin, J. Chem. Eng. Data 60, 3646 (2015)

    Article  Google Scholar 

  32. Z.-S. Chen, T. Ito, in The Proceedings of the 5th Asian Thermophysical Properties Conference, Seoul (1998), p. 321.

  33. 3M, 2019. Product Information-3M™ Novec™ 7000 High-Tech Flüssigkeit, 3M Deutschland GmbH Electronics & Energy Produkte (Dr.Nr. 1438117/09.2019 Index D).

  34. 3M, 2019. Product Information-3M™ Novec™ 7300 High-Tech Flüssigkeit, 3M Deutschland GmbH Electronics & Energy Produkte (Dr.Nr. 1438120/09.2019 Index D).

  35. 3M, 2019. Product Information-3M™ Novec™ 7500 High-Tech Flüssigkeit, 3M Deutschland GmbH Electronics & Energy Produkte (Dr.Nr. 1438121/09.2019 Index D).

  36. 3M, 2014. Product Information-3M™ Novec™ 7000 Engineered Fluid. Electronics Materials Solutions Division (2014).

  37. B. An, Y. Duan, L. Tan, Z. Yang, J. Chem. Eng. Data 60, 1206 (2015)

    Article  Google Scholar 

  38. M. Yasumoto, Y. Yamada, J. Murata, S. Urata, K. Otake, J. Chem. Eng. Data 48, 1368 (2003)

    Article  Google Scholar 

  39. J.V. Widiatmo, A. Uchimura, T. Tsuge, K. Watanabe, J. Chem. Eng. Data 46, 1448 (2001)

    Article  Google Scholar 

  40. J. Gmehling, M. Kleiber, B. Kolbe, J. Rarey, Chemical Thermodynamics for Process Simulation (Wiley, Weinheim, 2013)

    Google Scholar 

  41. Q. Chen, L. Du, X. Guan, Z. Guo, R. Gao, W. Li, G. Chen, J. Chem. Eng. Data 65, 4790 (2020)

    Article  Google Scholar 

  42. R. Akasaka, E.W. Lemmon, J. Chem. Eng. Data 64, 4679 (2019)

    Article  Google Scholar 

  43. R. Teraishi, Y. Kayukawa, R. Akasaka, K. Saito, Int. J. Refrig. 131, 33 (2021)

    Article  Google Scholar 

  44. N. Sakoda, Y. Higashi, R. Akasaka, J. Chem. Eng. Data 66, 734 (2021)

    Article  Google Scholar 

  45. K. Fujiwara, S. Nakamura, M. Noguchi, J. Chem. Eng. Data 43, 55 (1998)

    Article  Google Scholar 

  46. Y. Higashi, J. Chem. Eng. Data 51, 406 (2006)

    Article  Google Scholar 

  47. K. Fujiwara, S. Nakamura, M. Noguchi, J. Chem. Eng. Data 43, 967 (1998)

    Article  Google Scholar 

  48. J.J. Martin, R.C. Downing, ASHRAE Trans. 76, 129 (1970)

    Google Scholar 

  49. G. Hallewell, V. Vacek, V. Vinš, Fluid Phase Equilib. 292, 64 (2010)

    Article  Google Scholar 

  50. R. Tillner-Roth, A. Yokozeki, J. Phys. Chem. Ref. Data 26, 1273 (1997)

    Article  ADS  Google Scholar 

  51. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34, 69 (2005)

    Article  ADS  Google Scholar 

  52. R. Tillner-Roth, H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)

    Article  ADS  Google Scholar 

  53. N. Sakoda, Y. Higashi, R. Akasaka, J. Chem. Eng. Data 65, 4285 (2020)

    Article  Google Scholar 

  54. M. Thol, E.W. Lemmon, Int. J. Thermophys. 37, 28 (2016)

    Article  ADS  Google Scholar 

  55. Y. Zhou, E.W. Lemmon, Int. J. Thermophys. 37, 27 (2016)

    Article  ADS  Google Scholar 

  56. R. Akasaka, Y. Zhou, E.W. Lemmon, J. Phys. Chem. Ref. Data 44, 013104 (2015)

    Article  ADS  Google Scholar 

  57. X. Rui, J. Pan, Y. Wang, Fluid Phase Equilib. 341, 75 (2013)

    Article  Google Scholar 

  58. M.E. Mondejar, M.O. McLinden, E.W. Lemmon, J. Chem. Eng. Data 60, 2477 (2015)

    Article  Google Scholar 

  59. B. Platzer, A. Polt, G. Maurer, Thermophysical Properties of Refrigerants (Springer-Verlag, Berlin, 1990)

    Book  Google Scholar 

  60. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)

    Article  Google Scholar 

  61. K. Gao, A. Köster, M. Thol, J. Wu, E.W. Lemmon, Ind. Eng. Chem. Res. 60, 17207 (2021)

    Article  Google Scholar 

  62. A. Kamei, S.W. Beyerlein, R.T. Jacobsen, Int. J. Thermophys. 16, 1155 (1995)

    Article  ADS  Google Scholar 

  63. S.L. Outcalt, M.O. McLinden, J. Phys. Chem. Ref. Data 25, 605 (1996)

    Article  ADS  Google Scholar 

  64. M. Richter, M.O. McLinden, E.W. Lemmon, J. Chem. Eng. Data 56, 3254 (2011)

    Article  Google Scholar 

  65. H. Qi, D. Fang, K. Gao, X. Meng, J. Wu, Int. J. Thermophys. 37, 55 (2016)

    Article  ADS  Google Scholar 

  66. Heat Transfer Applications Using 3M™ Novec™ Engineered Fluids, Summary Datasheets for HFE-7000 to 7700 +NOVEC-649 (2018). Retrieved November 13, 2020, from www.3M.com/novec

  67. L. Riedel, Chem. Ing. Tech. 26, 83 (1954)

    Article  Google Scholar 

  68. A. Vetere, Ind. Eng. Chem. Res. 30, 2487 (1991)

    Article  Google Scholar 

  69. A.R.H. Goodwin, D.R. Defibaugh, L.A. Weber, J. Chem. Eng. Data 43, 846 (1998)

    Article  Google Scholar 

  70. J.V. Widiatmo, T. Tsuge, K. Watanabe, J. Chem. Eng. Data 46, 1442 (2001)

    Article  Google Scholar 

  71. K. Tanaka, J. Ishikawa, K.K. Kontomaris, Int. J. Refrig. 82, 283 (2017)

    Article  Google Scholar 

  72. Y. Kayukawa, M. Hasumoto, T. Hondo, Y. Kano, K. Watanabe, J. Chem. Eng. Data 48, 1141 (2003)

    Article  Google Scholar 

  73. Z.-W. Wang, Y.-Y. Duan, J. Chem. Eng. Data 49, 1581 (2004)

    Article  Google Scholar 

  74. S. Li, L. Xu, H. Liu, Z. Yang, Y. Duan, J. Chem. Eng. Data 65, 4223 (2020)

    Article  Google Scholar 

  75. K. Tanaka, Y. Higashi, Int. J. Refrig. 33, 474 (2010)

    Article  Google Scholar 

  76. T. Katsuyuki, J. Chem. Eng. Data 61, 1645 (2016)

    Article  Google Scholar 

  77. K. Magoulas, D. Tassios, Fluid Phase Equilib. 56, 119 (1990)

    Article  Google Scholar 

  78. O. Pfohl, Fluid Phase Equilib. 163, 157 (1999)

    Article  Google Scholar 

  79. H. Qi, D. Fang, X. Meng, J. Wu, J. Chem. Thermodyn. 77, 131 (2014)

    Article  Google Scholar 

  80. H. Ohta, Y. Morimoto, J.V. Widiatmo, K. Watanabe, J. Chem. Eng. Data 46, 1020 (2001)

    Article  Google Scholar 

  81. J. Klomfar, M. Součková, J. Pátek, J. Chem. Eng. Data 58, 2316 (2013)

    Article  Google Scholar 

  82. Y. Zheng, Z. Wei, X. Song, Fluid Phase Equilib. 425, 335 (2016)

    Article  Google Scholar 

  83. B. An, Y. Duan, F. Yang, Z. Yang, J. Chem. Eng. Data 60, 3289 (2015)

    Article  Google Scholar 

  84. B. An, L. Tan, Y. Duan, Z. Yang, J. Chem. Eng. Data 61, 1462 (2016)

    Article  Google Scholar 

  85. N. Muñoz-Rujas, F. Aguilar, J.-P. Bazileb, E.A. Montero, Fluid Phase Equilib. 429, 281 (2016)

    Article  Google Scholar 

  86. M.M. Piñeiro, D. Bessières, J.L. Legido, H. Saint-Guirons, Int. J. Thermophys. 24, 1265 (2003)

    Article  Google Scholar 

  87. M.M. Piñeiro, F. Plantier, D. Bessières, J.L. Legido, J.L. Daridon, Fluid Phase Equilib. 222–223, 297 (2004)

    Article  Google Scholar 

  88. N. Muñoz-Rujas, F. Aguilar, J.M. García-Alonso, E.A. Montero, J. Chem. Thermodyn. 131, 630 (2019)

    Article  Google Scholar 

  89. Y. Zheng, H. Gao, Q. Chen, X. Meng, J. Wu, Fluid Phase Equilib. 372, 56 (2014)

    Article  Google Scholar 

  90. D. Fang, Y. Li, X. Meng, J. Wu, J. Chem. Thermodyn. 69, 36 (2014)

    Article  Google Scholar 

  91. D. Fang, Y. Li, X. Meng, J. Wu, J. Chem. Thermodyn. 83, 123 (2015)

    Article  Google Scholar 

  92. 3M, 2009. Product Information-3M™ Novec™ 7200 Engineered Fluid. Electronics Materials Solutions Division (2009).

  93. 3M, 2009, Product Information-3M™ Novec™ 7300 Engineered Fluid. Electronics Materials Solutions Division, 09/2009.

  94. N. Muñoz-Rujas, F. Aguilar, J.M. García-Alonso, E.A. Montero, J. Chem. Thermodyn. 121, 1 (2018)

    Article  Google Scholar 

  95. N. Muñoz-Rujas, J.P. Bazile, F. Aguilar, G. Galliero, E. Montero, J.L. Daridon, J. Chem. Thermodyn. 128, 19 (2019)

    Article  Google Scholar 

  96. N. Muñoz-Rujas, J.P. Bazile, F. Aguilar, G. Galliero, E. Montero, J.L. Daridon, J. Chem. Thermodyn. 112, 52 (2017)

    Article  Google Scholar 

  97. S.L. Outcalt, J. Chem. Eng. Data 59, 2087 (2014)

    Article  Google Scholar 

  98. M.O. McLinden, C. Lösch-Will, J. Chem. Thermodyn. 39, 507 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE Grant Number CZ.02.1.01/0.0/0.0/16_019/0000753 “Research center for low carbon energy technologies”, the Czech Science Foundation Grant No. GA22-03380S and the institutional support RVO: 61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Vinš.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 5960 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminian, A., Celný, D., Mickoleit, E. et al. Ideal Gas Heat Capacity and Critical Properties of HFE-Type Engineering Fluids: Ab Initio Predictions of Cpig, Modeling of Phase Behavior and Thermodynamic Properties Using Peng–Robinson and Volume-Translated Peng–Robinson Equations of State. Int J Thermophys 43, 87 (2022). https://doi.org/10.1007/s10765-022-03006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03006-z

Keywords

Navigation