Skip to main content
Log in

Magnetic bacterial cellulose nanofibers for nucleoside recognition

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Applications of nanomaterials to biological systems have received increased interest in the past decades. In particular, bacterial cellulose nanofibers can be utilized in a broad range of applications. Biomaterials have been produced on large-scale with high reproducibility by an inspiring method such as molecular imprinting. Herein, for the first time, magnetic bacterial cellulose nanofibers are designed by the molecular imprinting method as a novel adsorbent for selective and efficient recognition of thymidine nucleoside. In this process, magnetic bacterial cellulose nanofibers are silanized with 3-(trimethoxysilyl) propyl methacrylate and further polymerized with a hydrophilic monomer for templating thymidine via metal chelate coordination. They are characterized by several methods and then applied for thymidine recognition to optimize the adsorption conditions. Hereby, the effecting factors are evaluated, and the highest adsorption capacity is obtained as 431.3 mg/g in pH 9.0 at 25 °C. The selectivity is assessed with competitor nucleosides and highly selective (4.13 and 3.80 times) adsorption of thymidine at the same concentration of other nucleosides (cytidine and uridine) is observed. After multiple adsorption–desorption experiments, the magnetic bacterial cellulose nanofibers also provided high reusability capacity. The present new work holds excellent potential for nucleoside recognition by integrating molecular imprinting with magnetic bacterial cellulose nanofibers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272

    CAS  Google Scholar 

  • Arshad R, Rhouati A, Hayat A, Nawaz MH, Yameen MA, Mujahid A, Latif U (2020) MIP-based impedimetric sensor for detecting dengue fever biomarker. Appl Biochem Biotech. https://doi.org/10.1007/s12010-020-03285-y

    Article  Google Scholar 

  • Baldikova E, Pospiskova K, Ladakis D, Kookos IK, Koutinas AA, Safarikova M, Safarik I (2017) Magnetically modified bacterial cellulose: a promising carrier for immobilization of affinity ligands, enzymes, and cells. Mater Sci Eng C 71:214–221

    CAS  Google Scholar 

  • Boswell-Casteel RC, Johnson JM, Roe-Zurz Z, Duggan KD, Schmitz H, Hays FA (2018) Expression and purification of human and Saccharomyces cerevisiae equilibrative nucleoside transporters. Protein Express Purif 142:68–74

    CAS  Google Scholar 

  • Breton F, Delpee R, Agrofoglio LA (2009) Molecular imprinting of AMP by an ionic noncovalent dual approach. J Sep Sci 32:3285–3291

    CAS  PubMed  Google Scholar 

  • Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotech 7:6–80

    Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications, fermentative production of microbial cellulose. Food Tech Biotechn 47:107–124

    CAS  Google Scholar 

  • Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas N (2019) Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic device. Prog Mater Sci 106:100589

    CAS  PubMed  Google Scholar 

  • Denizli A, Garipcan B, Emir S, Patir S, Say R (2002) Heavy metal ion adsorption properties of methacrylamidocysteine-containing porous poly(hydroxyethyl methacrylate) chelating beads. Ads Sci Technol 20:607–617

    CAS  Google Scholar 

  • Errasti-Murugarren E, Pastor-Anglada M (2010) Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 11:809–841

    CAS  PubMed  Google Scholar 

  • Fan JP, Zhang PY, Yang XM, Zhang XH, Cao YH, Peng HL (2018) Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity. J Appl Polym 135(41):46740

    Google Scholar 

  • Fathi F, Sharifi M, Jafari A, Kakavandi N, Kashanian S, Dolatabadi JEN, Rashidi MR (2019) Kinetic and thermodynamic insights into interaction of albumin with piperacillin: spectroscopic and molecular modeling approaches. J Mol Liquids 296:111770

    CAS  Google Scholar 

  • Göktürk I, Tamahkar E, Yılmaz F, Denizli A (2018) Protein depletion with bacterial cellulose nanofibers. J Chromatogr B 1099:1–9

    Google Scholar 

  • Greenhalf W et al (2014) Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J Natl Cancer I 106:1–10

    Google Scholar 

  • Hao Z, Thomsen M, Postis VLG, Lesiuk A, Sharples D, Wang Y, Bartlam M, Goldman A (2016) A novel and fast purification method for nucleoside transporters. Front Mol Biosci 3:1–8

    Google Scholar 

  • He H, Lu Q, Huang H, Xue F, Lin W, Zhou H, Wei W (2020) Biomass bagasse-based hyperbranched adsorbent for the complete removal of low-level Cr(VI). Cellulose 27:8121–8134

    CAS  Google Scholar 

  • Ho YS (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometr 59:171–177

    CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    CAS  Google Scholar 

  • Hsu CL et al (2012) Equilibrative nucleoside transporter deficiency per turbs lysosome function and macrophage homeostasis. Science 335:89–92

    CAS  PubMed  Google Scholar 

  • Inci F, Karaaslan MG, Mataji-Kojouri A, Shah PA, Saylan Y, Zeng Y, Avadhani A, Sinclair R, Lau DTY, Demirci U (2020) Enhancing the nanoplasmonic signal by a nanoparticle sandwiching strategy to detect viruses. App Mater Today 20:100709

    Google Scholar 

  • Iskierko Z, Sharma PS, Bartold K, Pietrzyk-Le A, Noworyta K, Kutner I (2016) Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechn Adv 34:30–46

    CAS  Google Scholar 

  • Johnson ZL, Cheong CG, Lee SY (2012) Crystal structure of a concentrative nucleoside transporter from vibriocholerae at 2.4 A. Nature 483:489–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464

    CAS  PubMed  Google Scholar 

  • Kim JH, Karpya VM, Biernacka JM, Nam HW, Lee MR, Preuss UW, Zill P, Yoon G, Colby C, Mrazek DA, Choi DS (2011) Functional role of the polymorphic 647 T/C variant of ENT1 (SLC29A1) and its association with alcohol withdrawal seizures. PLoS ONE 6:16331–16340

    Google Scholar 

  • Knobloch B, Linert W, Sigel H (2005) Metal ion-binding properties of (N3)-deprotonated uridine, thymidine, and related pyrimidine nucleosides in aqueous solution. PNAS 102:7459–7464

    CAS  PubMed  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Lim GW, Kang J, Ahmad AL, Chan CDJ (2015) Molecularly imprinted polymer layers using Navicula sp. frustule as core material for selective recognition of lysozyme. Chem Eng Res Des 101:2–14

    CAS  Google Scholar 

  • Lombardo S, Thielemans W (2019) Thermodynamics of adsorption on nanocellulose surfaces. Cellulose 26:249–279

    CAS  Google Scholar 

  • Lv XG, Yang JX, Feng C et al (2016) Bacterial cellulose-based biomimetic nanofibrous scaffold with muscle cells for hollow organ tissue engineering. ACS Biomater Sci Eng 2:19–29

    CAS  Google Scholar 

  • Madhu S, Ramteke PW (2019) Cellulose as potential feedstock for cellulase enzyme production: versatility and properties of various cellulosic biomass-Part II. In: Srivastava M, Srivastava N, Ramteke P, Mishra P (eds) Approaches to enhance industrial production of fungal cellulases. Fungal biology. Springer, Cham, pp 117–125

    Google Scholar 

  • Marques GO, Costa AL, Pereira C (2019) Gibbs free energy analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle. Int J Hydrog Energy 44(29):14536–14549

    CAS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248

    Google Scholar 

  • Mona S, Bajar S, Deepak B, Kiran B, Kaushik A (2019) Chapter 11: microbial cellulose—production and application. In: Grumezescu V, Grumezescu AM (eds) Materials for biomedical engineering. Absorbable polymers. Elsevier, pp 309–322

  • Nam HW, Hinton DJ, Kang NY, Kim T, Lee MR, Oliveros A, Adams C, Ruby CL, Choi DS (2013) Adenosine transporter ENT1 regulates the acquisition of goal-directed behavior and ethanol drinking through A2A receptor in the dorsomedial striatum. J Neurosci 33:4329–4338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perçin I, Karakoç V, Akgöl S, Aksöz E, Denizli A (2012) Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for plasmid DNA purification from Escherichia coli lysate. Mater Sci Eng C 32(5):1133–1140

    Google Scholar 

  • Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nature Rev Chem 2:382–389

    CAS  Google Scholar 

  • Rehan S, Jaakola VP (2015) Expression, purification and functional characterization of human equilibrative nucleoside transporter subtype-1 (hENT1) protein from Sf9 insect cells. Protein Express Purif 114:99–107

    CAS  Google Scholar 

  • Reiniati I, Hrymak AN, Margaritis A (2017) Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit Rev Biotechnol 37:510–524

    CAS  PubMed  Google Scholar 

  • Rico-Yuste A, Carrasco S (2019) Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers 11:1173

    PubMed Central  Google Scholar 

  • Rose JB, Coe IR (2008) Physiology of nucleoside transporters: back to the future. Physiol 23:41–48

    CAS  Google Scholar 

  • Sadowska M, Wandelt B (2008) Molecularly imprinted thin polymeric film as a fluorescent sensor for nucleotides. Mol Cryst Liq Cryst 486:203–212

    CAS  Google Scholar 

  • Safarik I, Baldikova E, Prochazkova J, Safarikova M, Pospiskova K (2018a) Magnetically modified agricultural and food waste: preparation and application. J Agric Food Chem 66:2538–2552

    CAS  PubMed  Google Scholar 

  • Safarik I, Baldikova E, Safarikova M, Pospiskova K (2018b) Magnetically responsive textile for a new preconcentration procedure: magnetic textile solid phase extraction. J Ind Text 48:1–11

    Google Scholar 

  • Safran V, Göktürk I, Derazshamshir A, Yılmaz F, Sağlam N, Denizli A (2019) Rapid sensing of Cu+2 in water and biological samples by sensitive molecularly imprinted based plasmonic biosensor. Microchem J 148:141–150

    CAS  Google Scholar 

  • Saylan Y, Uzun L, Denizli A (2015) Alanine functionalized magnetic nanoparticles for reversible amyloglucosidase immobilization. Ind Eng Chem Res 54(1):454–461

    CAS  Google Scholar 

  • Saylan Y, Tamahkar E, Denizli A (2017a) Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers. J Biomater Sci Polym Ed 28:1950–1965

    CAS  PubMed  Google Scholar 

  • Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A (2017b) Molecular imprinting of macromolecules for sensor applications. Sensors 17(4):898

    Google Scholar 

  • Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A (2019) Molecularly imprinted polymer based sensors for medical applications. Sensors 19:1279

    CAS  Google Scholar 

  • Saylan Y, Erdem Ö, Inci F, Denizli A (2020) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5(2):20

    CAS  PubMed Central  Google Scholar 

  • Shi L, Tang Y, Hao Y, He G, Gao R, Tang X (2016) Selective adsorption of protein by a high-efficiency Cu2+-cooperated magnetic imprinted nanomaterial. J Sep Sci 39(14):2876–2883

    CAS  PubMed  Google Scholar 

  • Skopp J (2009) Derivation of the Freundlich adsorption isotherm from kinetics. J Chem Educ 86:1341

    CAS  Google Scholar 

  • Swartz HM, Bolton JR, Borg DC (1972) Biological applications of electron spin resonance. Wiley, New York

    Google Scholar 

  • Tamahkar E, Bakhshpour M, Denizli A (2019) Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J Biomater Sci Polym Ed 30:450–461

    CAS  PubMed  Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154:337–346

    CAS  PubMed  Google Scholar 

  • Valdés R, Elferich J, Shinde U, Landfear SM (2014) Identification of the intracellular gate for a member of the equilibrative nucleoside transporter (ENT) family. J Biol Chem 289:8799–8809

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L (2018) Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sens 3:378–385

    CAS  PubMed  Google Scholar 

  • Xiang J, Li J, Zhang X, Ye Q, Xu J, Shen X (2014) Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A 2:16905–16914

    CAS  Google Scholar 

  • Xu Z, Xu P, Chen Y, Liu J, Zhang Y, Lv Y, Luo J, Fang M, Zhang J, Wang J, Wang K, Wang X, Chen G (2015) ENT1 inhibition attenuates epileptic seizure severity via regulation of glutamatergic neurotransmission. NeuroMol Med 17:1–11

    Google Scholar 

  • Ye S, Jiang L, Wu J, Su C, Huang C, Liu X, Shao W (2018) Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 10:5862–5870

    CAS  PubMed  Google Scholar 

  • Young JD, Yao SY, Baldwin JM, Cass CE, Baldwin SA (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspescts Med 34:529–547

    CAS  Google Scholar 

  • Yu Z, Bai B, Wang H, Ran X, Jin G, Sun J, Zhao C, Li M (2011) Morphology-tuning by changing the composition of a binary hydrogel comprising thymidine and melamine. Mater Sci Eng C 31:880–884

    CAS  Google Scholar 

  • Zhang Z, Hu YF, Zhang HB, Luo LJ, Yao SZ (2010) Electrochemical layer-by-layer modified imprinted sensor based on multi-walled carbon nanotubes and sol–gel materials for sensitive determination of thymidine. J Electroanal Chem 644:7–12

    CAS  Google Scholar 

  • Zhang Y, Huang S, Qian C, Wu Q, He J (2016) Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties. J Appl Polym 133(11):43191

    Google Scholar 

  • Zhao X, Han W, Jiang Y, Zhao C, Ji X, Kong F, Xu W, Zhang X (2019) A honeycomb-like paper-based thermoelectric generator based on a Bi2Te3/bacterial cellulose nanofiber coating. Nanoscale 11:17725–17735

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Hacettepe University Scientific Research Projects Coordination Unit (FHD-2018-16349). The authors thank Dr. Apostolis Koutinas (Agricultural University of Athens, Greece) for providing bacterial cellulose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Denizli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saylan, Y., Göktürk, l., Pospiskova, K. et al. Magnetic bacterial cellulose nanofibers for nucleoside recognition. Cellulose 27, 9479–9492 (2020). https://doi.org/10.1007/s10570-020-03425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03425-x

Keywords

Navigation