Skip to main content
Log in

A prediction of the beginning of the flowering of the common hazel in the Czech Republic

  • Original paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Timely information on the beginning of the flowering of important plant species of pollen allergens is consequential for the entire population due to pollen allergy and its extensive clinical impact worldwide. This paper examines the prediction of the beginning of the flowering of the common hazel (Corylus avellana) based on the PhenoClim phenological model using long-term phenological observations (1991–2020) in the Czech Republic. Furthermore, temporal and spatial evaluations of the beginning of the flowering of C. avellana were examined in different climate zones in the Czech Republic within the same period. In total, 40 phenological stations at altitudes from 155 to 743 m asl located in warm, medium warm, and cold climate zones were evaluated using the Mann–Kendall test. The beginning of the flowering of C. avellana changed progressively in timing, and the difference in the rate of shifts was between −33 and + 15 days per the entire period. An extreme shift to an earlier date was detected at stations located in a warm region (W2). In contrast, the highest shift to a later date was found at stations located in the cold climate regions (C4, C6, C7). Using the PhenoClim, the base temperature and temperature sums were calculated for the beginning of the flowering of the common hazel. As the most accurate predictor for this phenological phase and species, the maximum air temperature was determined as the best predictor based on the combination of RMSE and R2 values. The optimal start day for calculation was January 1st; the threshold (base temperature) was 2.7 °C with a temperature sum of 155.7 °C. The RMSE value was 5.46, and the MBE value was −0.93. The simulated data showed an excellent correlation with the observed data—the correlation coefficient was 0.932. The PhenoClim model results can be used in the forecast modelling of the beginning of the flowering of the common hazel in the Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., & Scheifinger, H. (2002). Changes in European spring phenology. International Journal of Climatology, 22, 1727–1738.

    Article  Google Scholar 

  • Anonymous (2009). Methodical instructions number 10 for phenological stations–wild plants. Prague. CHMI

  • Babálová, D., Škvareninová, J., Fazekaš, J., & Vyskot, I. (2018). The dynamics of the phonological development of four woody species in South-West and Central Slovakia. Sustainability, 10(5), 1497. https://doi.org/10.3390/su10051497

    Article  Google Scholar 

  • Bartošová L., Trnka M., Balek J., Bauer Z., Žalud Z. (2010a). Various methods of processing long-term phenological series. Šiška B, Hauptvolg M, Eliášová M (eds.), Bioclimate: Source and Limit social development, International Scientific Conference, 6th–9th September 2011, Topolčianky, Slovakia

  • Bartošová, L., Bauer, Z., Trnka, M., Štěpánek, P., & Žalud, Z. (2010b). Climatic factors and their influence on onset and duration of phenological phases of chosen plants at locations south Moravia during 1961–2007. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 58(2), 35–44.

    Article  Google Scholar 

  • Beggs, P. J. (Ed.). (2016). Impacts of climate change on allergens and allergic diseases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bennie, J., Kubin, E., Wiltshire, A., Huntley, B., & Baxter, R. (2010). Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: The implications of local adaptation to climate. Global Change Biology, 16, 1503–1514.

    Article  Google Scholar 

  • Biedermann, T., Winther, L., Till, S. J., Panzner, P., Knulst, A., & Valovirta, E. (2019). Birch pollen allergy in Europe. Allergy, 74(7), 1237–1248. https://doi.org/10.1111/all.13758

    Article  CAS  Google Scholar 

  • Bigler, C., & Vitasse, Y. (2019). Daily maximum temperatures induce lagged effects on leaf unfolding in temperate woody species across large elevational gradients. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00398

    Article  Google Scholar 

  • Botta, A., Viovy, N., Ciais, P., Friedlingstein, P., & Monfray, P. (2000). A global prognostic scheme of leaf onset using satellite data. Global Change Biology, 6, 709–725.

    Article  Google Scholar 

  • Černá, H., Bartošová, L., Trnka, M., Bauer, Z., Štěpánek, P., Možný, M., Dubrovský, M., & Žalud, Z. (2012). The analysis of long-term phenological data of apricot tree (Prunus armeniaca L.) in southern Moravia during 1927–2009. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 60(3), 9–18.

    Article  Google Scholar 

  • Chmielewski, F. M., Műller, A., & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 121, 69–78.

    Article  Google Scholar 

  • Chuine I., de Cortazar-Atauri I.G., Kramer K., Hanninen H. (2013). Plant development models. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer; Dordrecht, pp 275–293

  • Coufal L., Houška V., Reitschlager J.D., Valter J., Vráblík T. (2004). Phenological Atlas, CHMI, 1st edition, ISBN 80–86690–21–0, 204

  • Črepinšek, Z., Kajfež-Bogataj, L., & Bergant, K. (2012). Modelling of weather variability effect on fitophenology. Ecological Modelling, 194(2006), 256–265.

    Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., & van Cauwenberge, P. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 2007(62), 976–990. https://doi.org/10.1111/j.1398-9995.2007.01393.x

    Article  CAS  Google Scholar 

  • Dabrowska, A. (2012). Flowering phenology and pollen seasons of Corylus spp.in Lublin (Poland) 2008-2011. Acta Agrobotanica, 65(3), 13–24.

    Article  Google Scholar 

  • Dabrowska-Zapart, K., & Niedźwiedź, T. (2020). The impact of weather conditions on hazel pollen concentration in Sosnowiec (Poland) in 1997–2019. Aerobiologia, 36, 697–713. https://doi.org/10.1007/s10453-020-09661-9

    Article  Google Scholar 

  • Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51, 181–191. https://doi.org/10.1007/s00484-006-0059-2

    Article  Google Scholar 

  • Fitter, A. H., & Fitter, R. S. (2002). Rapid changes in flowering time in British plants. Science, 296, 1689–1691.

    Article  CAS  Google Scholar 

  • Frenguelli, G., Bricchi, E., Romano, B., Mincigrucci, G., Ferranti, F., & Antognozzi, E. (1992). The role of air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia, 8, 415–418.

    Article  Google Scholar 

  • Grewling, L., Jenerowicz, D., Nowak, M., Polanska, A., Jackowiak, B., Czarnecka-Operacz, M., & Smith, M. (2014). Clinical relevance of Corylus pollen in Poznan, western Poland. Annals of Agricultural and Environmental Medicine, 21(1), 64–69.

    Google Scholar 

  • Hájková, L., Voženílek, V., Tolasz, R., Kohut, M., Možný. M., Nekovář, J., Novák, M., Reitschläger, J.D., Richterová, D., Stříž, M., Vávra, A., Vondráková, A. (2012). Atlas of the phenological conditions in Czechia. CHMI Prague-UP Olomouc, ISBN (CHMI) 978–80–86690–98–8; ISBN (UP) 978–80–244–3005–8, 312

  • Hájková, L., Kožnarová, V., Možný, M., & Bartošová, L. (2020). Influence of climate change on flowering season of birch in the Czech Republic. International Journal of Biometeorology, 64, 791–801. https://doi.org/10.1007/s00484-020-01869-1

    Article  Google Scholar 

  • Hájková, L., Nekovář, J., & Richterová, D. (2009). Temporal and spatial variability in allergy-triggering phenological phases of hazel and alder in Czechia. Folia Oecologica, 36(1), 8–19.

    Google Scholar 

  • Hidalgo-Galvez, M. D., Garcia-Mozo, H., Oteros, J., Mestre, A., Botey, R., & Galan, C. (2018). Phenological behaviour of early spring flowering trees in Spain in response to recent climate changes. Theoretical and Applied Climatology, 132(1–2), 263–273. https://doi.org/10.1007/s00704-017-2089-6

    Article  Google Scholar 

  • Jolly, W. M., Nemani, R., & Running, S. W. (2005). A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biology, 11, 619–632.

    Article  Google Scholar 

  • Karlsson, P. S., Bylund, H., Neuvonen, S., Heino, S., & Tjus, M. (2003). Climatic response of budburst in the mountain birch at two areas in northern Fennoscandia. International Journal of Applied Earth Observation and Geoinformation, 10, 253–266.

    Google Scholar 

  • Kaufmann, H., & Blanke, M. (2019). Substitution of winter chilling by spring forcing for flowering using sweet cherry as model crop. Scientia Horticulturae, 244, 75–81.

    Article  Google Scholar 

  • Květoň V., Voženílek, V. (2011). Climatic regions of Czechia–Quitt’s classification during years 1961–2000. Palackého University in Olomouc, 978–80–244–2813–0, 20 pp

  • Li, D. J., Barve, N., Brenskelle, L., Earl, K., Barve, V., Belitz, M. W., Doby, J., Hantak, M. M., Oswald, J. A., Stucky, B. J., Walters, M., & Gularnick, R. P. (2020). Climate, urbanization, and species traits interactively drive flowering duration. Global Change Biology. https://doi.org/10.1111/gcb.15461

    Article  Google Scholar 

  • Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann Kendall tests for trend detection in the presence of covariates. Environmetrics, 13, 71–84.

    Article  CAS  Google Scholar 

  • Luschkova, D., Traidl-Hoffmann, C., & Ludwig, A. (2022). Climate change and allergies. Allergo Journal, 31(4), 114–120. https://doi.org/10.1007/s40629-022-00212-x

    Article  Google Scholar 

  • Meier U. (2001). BBCH-monograph: growth stages of mono- and dicotyledonous plants. Technical Report, 2nd edn. Federal Biological Research Centre for Agriculture and Forestry

  • Menzel, A., et al. (2006). European phenological response to climate change matches the warming patterns. Global Change Biology, 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193x

    Article  Google Scholar 

  • Myszkowska, D., Jenner, B., Puc, M., Nowak, M., Malkiewicz, M., Chłopek, K., et al. (2010). Spatial variations in the dynamics of the Alnus and Corylus pollen seasons in Poland. Aerobiologia, 26, 209–221. https://doi.org/10.1007/s10453-010-9157-z

    Article  Google Scholar 

  • Pecoraro, L., Dalle, C. L., De Franceschi, L., Piacentini, G., & Pietrobelli, A. (2020). Cambiamento climatico, inquinamento atmosferico e aumento delle allergie respiratorie: solo una coincidenza o qualcosa di più? [Climate change, air pollution, and increase of respiratory allergies: just a coincidence or something more?]. Epidemiologia e Prevenzione., 44(5–6), 405–409. https://doi.org/10.19191/EP20.5-6.P405.017

    Article  Google Scholar 

  • Poikolainen, J., Tolvanen, A., Karhu, J., & Kubin, E. (2016). Seventeen-year trends in spring and autumn phenophases of Betula pubescens in a boreal environment. International Journal of Biometeorology, 60, 1227–1236. https://doi.org/10.1007/s00484-015-1118-3

    Article  Google Scholar 

  • Puc, M., & Kasprzyk, I. (2013). The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions. Aerobiologia, 29, 495–511. https://doi.org/10.1007/s10453-013-9299-x

    Article  Google Scholar 

  • Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F., & Pitcairn, M. J. (1999). Evaluation of several degree-day estimation methods in California climates. International Journal of Biometeorology, 42, 169–176.

    Article  Google Scholar 

  • Rybníček O., Rybníček K., Rybníčková E. (1997). Miniatlas of pollen allergens. City hygiene station, Brno, 1st edition, 46 pp

  • Škvareninová, J. (2016). Impact of climatic conditions on the reproductive phonological phases of European hazel (Corylus avellana L.) in Slovakia. Journal of Forest Science, 62(2), 47–52.

    Article  Google Scholar 

  • Škvareninová, J., Benčaťová, B., Škvarenina, J., Šiška, B., Hríbik, M., & Lafférsová, J. (2011). Variation of spring phenological phases and airborne pollen grains of the European hazel (Corylus avellana L.) in the Zvolen basin (Slovakia) as influenced by meteorological factors. Prace Geograficzne, 126, 85–94.

    Google Scholar 

  • Solantie, R. (2004). Daytime temperature sum – a new thermal variable describing growing season characteristics and explaining evapotranspiration. Boreal Environment Research, 9, 319–333.

    Google Scholar 

  • Stepalska, D., Myszkowska, D., Piotrowicz, K., & Kasprzyk, I. (2016). The phenological phases of flowering and pollen seasons of spring flowering tree taxa against a background of meteorological conditions in Kraków. Poland Acta Agrobotanica, 65(2), 1678. https://doi.org/10.5586/aa.1678

    Article  Google Scholar 

  • Štěpánek P. (2010a). AnClim – software for time series analysis. Department of Geography, Faculty of Natural Science, MU Brno (http://www.climahom.eu/AnClim.html) (accessed on October 17, 2022)

  • Suanno, C., Aloisi, I., Fernández-González, D., & Del Duca, S. (2021). Pollen forecasting and its relevance in pollen allergen avoidance. Environmental Research, 200(2021), 111150. https://doi.org/10.1016/j.envres.2021.111150

    Article  CAS  Google Scholar 

  • Templ, B., Fleck, S., & Templ, M. (2016). Change of plant phenophases explained by survival modeling. International Journal of Biometeorology. https://doi.org/10.1007/s00484-016-1267-z

    Article  Google Scholar 

  • Tolasz, R. et al. (2007). Climate Atlas of Czechia. Prague: CHMI, 1st edition. ISBN 978–80–86690–26–1, 255 p

  • Urrutia-Pereira, M., Guidos-Fogelbach, G., & Sole, D. (2022). Climate changes, air pollution and allergic diseases in childhood and adolescence. Jornal De Pediatria, 98, S47–S54. https://doi.org/10.1016/j.jped.2021.10.005

    Article  Google Scholar 

  • Vitasse, Y., Francois, C., Delpierre, N., Dufrene, E., Kremer, A., Chuine, I., & Delzon, S. (2011). Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151(7), 969–980.

    Article  Google Scholar 

  • Wihl, J. A., Ipsen, B., Nuchel, P. B., Munch, E. P., Janniche, E., & Lovenstein, H. (1998). Immunotherapy with partially purified and standardized tree pollen extracts. Allergy, 43, 363–369.

    Article  Google Scholar 

  • Wolf, K. L., Lam, S. T., McKeen, J. K., Richardson, G. R. A., van den Bosch, M., & Bardekjian, A. C. (2020). Urban trees and human health: A scoping review. International Journal of Environmental Research and Public Health, 17(12), 4371. https://doi.org/10.3390/ijerph17124371

    Article  Google Scholar 

  • www.pep725.eu. Accessed 8 Nov 2022

  • Yu, R., Schwartz, M. D., Donnelly, A., & Liang, L. (2016). An observation-based progression modelling approach to spring and autumn deciduous tree phenology. International Journal of Biometeorology, 60, 335–349. https://doi.org/10.1007/s00484-015-1031-9

    Article  Google Scholar 

  • Zhang, Y., Bielory, L., & Georgopoulos, P. G. (2014). Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. International Journal of Biometeorology, 58, 909. https://doi.org/10.1007/s00484-013-0674-7

    Article  Google Scholar 

  • Ziska, L. H., et al. (2019). Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. The Lancet Planetary Health, 3(3), e124–e131. https://doi.org/10.1016/S2542-5196(19)30015-4

    Article  Google Scholar 

  • Zuberbier, T., Aberer, W., Asero, R., Bindslev-Jensen, C., Brzoza, Z., Canonica, G. W., Church, M. K., Ensina, L. F., Gimenez-Arnau, A., Godse, K., Goncalo, M., Grattan, C., Hebert, J., Hide, M., Kaplan, A., Kapp, A., Abdul Latiff, A. H., Mathelier-Fusade, P., Metz, M., … Maurer, M. (2014). Methods report on the development of the 2013 revision and update of the EAACI/GA2 LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy, 69, e1–e29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the project SustES – Adaptation Strategies for the Sustainability of Ecosystem Services and Food Security in Adverse Natural Conditions (CZ.02.1.01 / 0.0 / 0.0 / 16 019 / 0000797) and by the project No. SS02030018 (DivLand) and project No. SS02030040 (PERUN).

Funding

This study was funded by Ministerstvo Školství, Mládeže a Tělovýchovy, project SustES—Adaptation Strategies for the Sustainability of Ecosystem Services and, Food Security in Adverse Natural Conditions (CZ.02.1.01 / 0.0 / 0.0 / 16 019 / 0000797, Zdeněk Žalud, and by Technologická Agentura České Republiky, Project No. SS02030018 (DivLand), Martin Možný and Project No. SS02030040 (PERUN), Martin Možný.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Hájková.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hájková, L., Možný, M., Bartošová, L. et al. A prediction of the beginning of the flowering of the common hazel in the Czech Republic. Aerobiologia 39, 21–35 (2023). https://doi.org/10.1007/s10453-022-09770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-022-09770-7

Keywords

Navigation