Skip to main content

Advertisement

Log in

Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Mountain spruce forests in Central Europe decline under storms and bark beetle calamities driven by climate change. A stabilisation by planting rare or missing tree species is expensive and requires funding. A funding policy should mitigate climate change and support biodiversity. The goal of this study was to identify a conversion strategy of even-aged spruce-dominated forest stands to uneven-aged mixed stands with spruce (Picea abies (L.) H.Karst.), beech (Fagus sylvatica L.), and fir (Abies alba Mill.). A simultaneous nonlinear optimisation of the number of planted trees and harvested trees per species and per period schedules stand treatments aiming to maximise the long-term financial outcome. Planting modelling extends a density-dependent stand-level matrix transition model based on diameter classes with an age-class-based model for artificial regeneration. An optimal conversion strategy was applied for five funding policy schemes, each for five initial states representing different stages of age and species composition typical for spruce forest conversion in the mountain zone of the Western Carpathians. Only 50% and higher funding of planting costs for the minor/missing fir and beech species facilitates a substantial increase of their shares in stand volume. Funding decreases the volume failure due to mortality. Funding increases the standing and harvested volume, which mitigates climate change by increasing the carbon sequestration. Funding causes unintended effects on ecosystem services by lowering harvest diameters, decreasing the volume of less profitable beech, and temporarily reducing the stand density aimed at supporting plantings and their diameter increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material (data transparency)

Summarised data generated and analysed during this study is included in this published article. Detailed data sources are cited.

Code availability(software application or custom code)

Summarised software code generated during this study is described in this published article.

References

  • Ammann S (2017) Biotopbaumförderung im Kanton Zürich. [Funding for habitat trees in canton Zürich]. Zürcher Wald 6: 4–8. https://www.zueriwald.ch/files/5515/1844/8450/ZW6_17.pdf

  • Austin KG, Baker JS, Sohngen BL, Wade CM, Daigneault A, Ohrel SB, Ragnauth S, Bean A (2020) The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat Commun 11:5946. https://doi.org/10.1038/s41467-020-19578-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axer M, Martens S, Schlicht R, Wagner S (2021) Modelling natural regeneration of European beech in Saxony, Germany: identifying factors infuencing the occurrence and density of regeneration. Eur J Res 140:947–968. https://doi.org/10.1007/s10342-021-01377-w

    Article  Google Scholar 

  • Buongiorno J, Michie BR (1980) A matrix model of uneven-aged forest management. Forest Sci 26:609–625. https://doi.org/10.1093/forestscience/26.4.609

    Article  Google Scholar 

  • Cienciala E, Russ R, Šantrůčková H, Altman J, Kopáček J, Hůnová I, Štěpánek P, Oulehle F, Tumajer J, Stahl G (2016) Discerning environmental factors affecting current tree growth in Central Europe. Sci Total Environ 573:541–554. https://doi.org/10.1016/j.scitotenv.2016.08.115

    Article  CAS  PubMed  Google Scholar 

  • Cienciala E, Tumajer J, Zatloukal V, Beranová J, Holá Š, Hůnová I, Russ R (2017) Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. Eur J for Res 136:307–317. https://doi.org/10.1007/s10342-017-1032-9

    Article  Google Scholar 

  • Framework Convention on Climate Change, Paris Agreement (FCCC) (2021) Climate change conference in Glasgow Climate Pact by the Conference of the Parties 26 serving as the meeting of the Parties. Retrieved 2021-11-14

  • Deegen P, Stümer W, Villa W, Pretzsch H (2000) Zur finanziellen Analyse der Waldpflegeentscheidung bei Berücksichtigung der Biodiversitat, dargestellt am Beispiel der Fichte in Sachsen [Financial analysis of the thinning decision with consideration of biodiversity, using the example of spruce in Saxony] Forstwissenschaftliches Centralblatt 119: 226–244. Blackwell Wissenschafts-Verlag, Berlin ISSN 0015–8003

  • Dobor L, Hlásný T, Zimová S (2020) Contrasting vulnerability of monospecific and species-divers forests to wind and bark beetle disturbance: the role of management. Ecol Evol 10:12233–12245. https://doi.org/10.1002/ece3.6854

    Article  PubMed  PubMed Central  Google Scholar 

  • Dymond CC, Tedder S, Spittlehouse DL, Raymer B, Hopkins K, McCallion K, Sandland J (2014) Diversifying managed forests to increase resilience. Can J for Res 44:1196–1205. https://doi.org/10.1139/cjfr-2014-0146

    Article  Google Scholar 

  • European Union (2016) Nature 2000 and forests. Part III Case studies Good practice experiences and examples from different Member States in managing forests in Natura 2000. Technical Report–2015–089. https://doi.org/10.2779/65827

  • Fetting C (2020) The European Green Deal, ESDN Report, December 2020, ESDN Office, Vienna

  • Ficko A, Roessiger J, Bončina A (2016) Can the use of continuous cover forestry alone maintain silver fir (Abies alba Mill.) in central European mountain forests? Forestry (London) 89:412–421. https://doi.org/10.1093/forestry/cpw013

    Article  Google Scholar 

  • Ficko A, Roessiger J, Bončina A (2018) Optimizing silviculture in mixed unevenaged forests to increase the recruitment of browse-sensitive tree species without intervening in ungulate population. iForest 11:227–236. https://doi.org/10.3832/ifor2567-011

    Article  Google Scholar 

  • Griess VC, Knoke T (2011) Growth performance, wind-throw, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J for Res 41:1141–1159. https://doi.org/10.1139/x11-042

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. Ecol Manage 267:284–296. https://doi.org/10.1016/j.foreco.2011.11.035

    Article  Google Scholar 

  • Grima N, Singh SJ, Smetschka B, Ringhofer L (2016) Payment for Ecosystem Services (PES) in Latin America: analysing the performance of 40 case studies. Ecosyst Serv 17:24–32

    Article  Google Scholar 

  • Halaj J, Petráš R (1998) Rastové tabuľky hlavných drevín [Yield tables of main tree species]. Slovak Academic Press, Bratislava, p 325

    Google Scholar 

  • Hlásny T, Barka I, Kulla L, Bucha T, Sedmák R, Trombik J (2017) Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change. Reg Environ Change 17(1):65–77. https://doi.org/10.1007/s10113-015-0894-y

    Article  Google Scholar 

  • Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG (2017) Tree diversity drives forest stand resistance to natural disturbances. Curr Forestry Rep 3:223–243. https://doi.org/10.1007/s40725-017-0064-1

    Article  Google Scholar 

  • King AA (2015) Subplex: unconstrained optimization using the subplex algorithm. R Package, Version 1.1-6

  • Klopčič M, Simončič T, Bončina A (2015) Comparison of regeneration and recruitment of shade-tolerant and light-demanding tree species in mixed uneven-aged forests: experiences from the Dinaric region. Forestry Int J Res 88:552–563. https://doi.org/10.1093/forestry/cpv021

    Article  Google Scholar 

  • Knoke T (2003) Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecol Model 169:295–312

    Article  Google Scholar 

  • Kolo H, Ankerst D, Knoke T (2017) Predicting natural forest regeneration: a statistical model based on inventory data. Eur J Res 136:923–938. https://doi.org/10.1007/s10342-017-1080-1

    Article  Google Scholar 

  • Kovalčík M, Kulla L (2015) Modely nákladov pestovnŷch činností [Silvicultural costs models], p. 81–93, In: Sarvašová Z, Kovalčík M (eds.): Aktuálne otázky ekonomiky a politiky lesného hospodárstva slovenskej republiky. [Actual questions about economics and politics of forest management in the Sloval Republic]. Zborník z odborného seminára. [Proceedings of symposium] Zvolen 10. December 2015 [in Slovak]

  • Larrieu L, Paillet Y, Winter S, Bütler R, Kraus D, Krumm F, Lachat T, Michel AK, Reggnery B, Vandekerkhove K (2018) Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol Ind 84:194–207. https://doi.org/10.1016/j.ecolind.2017.08.051

    Article  Google Scholar 

  • Lesy SR (2020) Ponukový cenník sortimentov surového dreva platný pre rok 2017–2019 [supply assortment prices of raw timber]. Lesy Slovenskej republiky š. p. [Slovak Forests State Enterprise]

  • Ministry for Forest and Water Management of the Slovak Republic [Ministerstvo lesného a vodného hospodárstva Slovenskej republiky] (1992a) Výkonové normy pre sústred´ovanie dreva univerzálnymi, pásovými a špeciálnymi lesnými kolesovými traktormi. [Performance Standards for Concentration of Timber with Universal, Crawler, and Special Forest Wheel Tractor] Zborník [Proceedings]. 21, 91/1992a-23011.3.1992a

  • Ministry for Forest and Water Management of the Slovak Republic [Ministerstvo lesného a vodného hospodárstva Slovenskej republiky] (1992b) Výkonové normy preťažbu dreva. [Performance standards for timber harvest]. Zborník [Proceedings]. 21, 230-2165/234/83-EP

  • Ministry of Agriculture and Rural Development of the Slovak Republic [Ministerstvo pôdohospodárstva a rozvoja vidieka Slovenskej republiky] (2019) Správa o lesnom hospodárstve Slovenskej republiky za rok 2018—Zelená správa [Report on Forestry in the Slovak Republic 2018—Green Report] (supplementary material). Národné lesnícke centrum [National Forest Centre] 64 pp. https://www.mpsr.sk/zelena-sprava-2019/123---14927/

  • Nürnberger K, Hahn A, Roessiger J, Knoke T (2014) Auswirkungen der Steuervergünstigung für außerordentliche Holznutzungen auf die Wahl waldbaulicher Alternativen. Eine Simulationsstudie aus der Sicht eines risikomeidenden Entscheiders [Impacts of tax reductions for extraordinary timber extraction on the choice about silvicultural alternatives. A simulation study from the perspective of a risk avoiding decision maker]. Kirschke D, Bokelmann W, Hagedorn K, Hüttel S: Wie viel Markt und wie viel Regulierung braucht eine nachhaltige Agrarentwicklung? [How many market and how many regulation is needed for a sustainable agricultural development?] Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V. 49, Landwirtschaftsverlag: 237–245

  • OECD/IEA (2021) Update on recent progress in reform of inefficient fossil-fuel subsidies that encourage wasteful consumption. www.oecd.org/fossil-fuels/publicationsandfurtherreading/OECD-IEA-G20-Fossil-Fuel-Subsidies-Reform-Update-2021.pdf

  • Pe´er G, Lakner S, Seppelt R, Bezák P, Bonn A, Concepción ED, Creutzig F, Daub CH, Díaz M, Dieker P, Eisenhauer N, Hagedorn G, Hansjürgens B, Harrer-Puchner G, Herzon I, Hickler T, Jetzkowitz J, Kazakova Y, Kindlmann P, Kirchner M, Klein AM, Linow S, Lomba A, López-Bao JV, Metta M, Morales MB, Moreira F, Mupepele AC, Navarro A, Oppermann R, Rac I, Röder N, Schäfer M, Sirami C, Streck C, Šumrada T, Tielbörger K, Underberg E, Wagner-Lohse G, Baumann F (2020) The EU´s common agricultural policy and sustainable farming: a statement by scientists. Zenodo. 10.5281/zenodo.4311314

  • Pe´er G, Zinngrebe Y, Moreira F, Sirami C, Schindler S, Müller R, Bontzorlos V, Clough D, Bezák P, Bonn A, Hansjürgens B, Lomba A, Möckel S, Passoni G, Schleyer C, Schmidt J, Lakner S (2019) A greener path for the EU common agricultural policy. Science 365: 449–451. https://doi.org/10.1126/science.aax3146

  • Petráš R, Nociar V (1991) Sortimentačné tabuľky hlavných drevín [Assortment tables for main tree species]. Veda, Bratislava, 304s

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. [System of cecho-slovakian timber volume tables]. Lesnícky Časopis 37:49–56

    Google Scholar 

  • Pretzsch H, Biber P (2016) Tree species mixing can increase maximum stand density. Can J for Res 46:1179–1193. https://doi.org/10.1139/cjfr-2015-0413

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Rämö J, Tahvonen O (2014) Economics of harvesting uneven-aged forest stands in Fennoscandia. Scand J Res 29:777–792. https://doi.org/10.1080/02827581.2014.982166

    Article  Google Scholar 

  • Remiš J, Konôpka J, Lipták J, Štefančík L (1988) Modely a technologické postupy pre fázové výrobky pestovnej činnosti [Models and technological procedure for production phase of tending activity]. Príroda, Bratislava, 112 s

  • Roessiger J, Ficko A, Clasen C, Griess VC, Knoke T (2016) Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters. Eur J for Res 135:283–295. https://doi.org/10.1007/s10342-015-0935-6

    Article  Google Scholar 

  • Roessiger J, Kulla L, Sedliak M, Kovalčík M, Barka I, Fabrika M (2017) Compensation payments for alternative forest management supporting nature conservation—a case study based on SIBYLA tree growth simulator and silvicultural cost model. Austrian J Forest Sci 134(1a):177–204

    Google Scholar 

  • Roessiger J, Kulla L, Bošeľa M (2018) Finding equilibrium in continuous-cover forest management sensitive to interest rates using an advanced matrix transition model. J Forest Econ 33:83–94. https://doi.org/10.1016/j.jfe.2018.12.001

    Article  Google Scholar 

  • Roessiger J, Kulla L, Sedliak M (2020) A high proportion of Norway spruce in mixed stands increases probability of stand failure. Cent Eur J 66:218–226. https://doi.org/10.2478/forj-2020-0017

    Article  Google Scholar 

  • Rowan TH (1990) Functional stability analysis of numerical algorithms. Ph.D. Thesis. Department of Computer Sciences, University of Texas at Austin. Computer Science Dept

  • Savin NE, White KJ (1977) The Durbin-Watson test for serial correlation with extreme sample sizes or many regressors. Econometric 45:1989–1996. https://doi.org/10.2307/1914122

    Article  Google Scholar 

  • Šebeň V (2017) Národná inventarizácia a monitoring lesov Slovenskej republiky 2015–2016. Informácie, metódy, výsledky. [National Forest Inventory of the Slovak Republic 2015–2016. Information´s, methods, results] NLC Zvolen, 255s

  • Stickler CM, Nepstad DC, Coe MT, McGrath DG, Rodrigues HO, Walker WS, Soares-Filho BS, Davidson EA (2009) The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Glob Change Biol 15:2803–2824. https://doi.org/10.1111/j.1365-2486.2009.02109.x

    Article  Google Scholar 

  • Tahvonen O, Rämö J (2016) Optimality of continuous cover vs. Clear-cut regimes in managing forest resources. Can J for Res 46:891–901. https://doi.org/10.1139/cjfr-2015-0474

    Article  Google Scholar 

  • Wunder S (2007) The efficiency of payments for environmental services in tropical conservation. Conserv Biol 21:48–58. https://doi.org/10.1111/J.1523-1739.2006.00559.X

    Article  PubMed  Google Scholar 

  • Zahvoyska L, Pelyukh O, Maksymiv L (2017) Methodological considerations and their application for evaluation of benefits from the conversion of even-age secondary Norway spruce stands into mixed uneven-aged woodlands with a focus on the Ukrainian Carpathians. Austrian J Forest Sci 134(1a):251–282

    Google Scholar 

  • Zhou M, Buongiorno J (2004) Nonlinearity and noise interaction in a model of forest growth. Ecol Mod 180:291–394. https://doi.org/10.1016/j.ecolmodel.2004.04.023

    Article  Google Scholar 

Download references

Acknowledgements

The study uses a database on forest management plans and forest management records created within the project Interreg SK-CZ BESKYDY (ITMS2014+: 304021D067) by National Forest Centre (NFC) Zvolen and Global Change Research Institute (GCRI) Brno.

Funding

This work was supported by the Slovak Research and Development Agency (project SilvaMod, APVV-18–0195), the Ministry of Agriculture and Rural Development of the Slovak Republic (project EPRIBLES, Item No. 08V0301), and the ERDF through Research & Development Operational Programme (project Centre of Excellence of Forest-based Industry, ITMS: 313011S735).

Author information

Authors and Affiliations

Authors

Contributions

Joerg Roessiger: Conceptualisation, Visualisation, Methodology (statistical analysis of inventory data, ecological and economic sub-models, simulation and optimisation model), Software, Investigation, Validation (simulation and optimisation model), Roles/Writing—original draft (except Sects. 2.1; 2.2; 5); Ladislav Kulla: Conceptualisation, Methodology (stratification and definition of scenarios), Roles/Writing—original draft (Sects. 2.1; 2.2; 5), Writing—review and editing, Supervision, Project administration, Funding acquisition; Vlastimil Murgaš: Data curation, Formal analysis (Tree inventory data, volume, timber price, harvest cost data); Maroš Sedliak: Data curation, Formal analysis (Salvage harvest data); Miroslav Kovalčík: Data curation, Formal analysis, Methodology (timber price data, harvest cost data, planting data and planting cost model); Emil Cienciala: Data curation, Formal analysis (Czech inventory data); Vladimír Šebeň: Data curation, Formal analysis (Slovak inventory data).

Corresponding author

Correspondence to Joerg Roessiger.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Consent for publication

The co-authors know the paper and agree with publication.

Additional information

Communicated by Thomas Knoke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Initial diameter distribution for stand development types (SDTs) in the experimental object Polom (XLSX 35 kb)

10342_2022_1456_MOESM2_ESM.xlsx

Distribution of the optimised mean harvest volume per harvest diameter for the planting cost factor (CF) during equilibrium for the financially best cases per scenario (XLSX 30 kb)

10342_2022_1456_MOESM3_ESM.xlsx

Influence of the cost factor (CF) on the diameter distribution during equilibrium; each CF is represented by the minimum and maximum sum of the number of standing trees (before harvest) from the financially best cases for each scenario (XLSX 18 kb)

10342_2022_1456_MOESM4_ESM.xlsx

Financial optimisation results and their sensitivity against the optimisation parameter parscale, note the different y-axes (XLSX 40 kb)

10342_2022_1456_MOESM5_ESM.xlsx

Mean standing, harvested, mortal, and mean species-specific standing timber volume resulting from planting cost factor, initial, and parscale scenarios are shown; volume only during equilibrium (XLSX 391 kb)

10342_2022_1456_MOESM6_ESM.xlsx

Efficiency of funding measured by the differences in mean standing, harvested, mortal, and mean species-specific standing timber volume resulting from planting cost factor, initial, and parscale scenarios compared to the mean state of CF 100% per invested € into planting (calculated as NPV of funding of planting costs) are shown; CF 75% M1 excluded; CF 75% M2 partly excluded; volume only during equilibrium (XLSX 367 kb)

10342_2022_1456_MOESM7_ESM.xlsx

Sensitivity analyses of the equilibrium state by varying the factors: Planting cost factor (CF); Interest rate (Int); Mortality probability (Mo); Fir planted tree survival (Fps); Site (Increment dependent on mean site index for Ac acidic; Eu eutrophic; Mo mountain; Sm submountain); Base scenario: CF 50%, Int 2%, Mo mean; Fps mean; Site Ac Mo (XLSX 15 kb)

Volumes and net cash flows per tree species and diameter class (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roessiger, J., Kulla, L., Murgaš, V. et al. Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation. Eur J Forest Res 141, 517–534 (2022). https://doi.org/10.1007/s10342-022-01456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01456-6

Keywords

Navigation