Skip to main content

Advertisement

Log in

The applicability of the Hess–Brezowsky synoptic classification to the description of climate elements in Europe

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study deals with the applicability of the Hess–Brezowsky synoptic classification to the description of surface climate elements, specifically minimum and maximum temperature and precipitation, in Europe. The suitability of the Hess–Brezowsky classification for this purpose in the European domain is analyzed using the two-sample Kolmogorov–Smirnov test. The test was performed on European Climate Assessment and Dataset data from 113 stations for the years 1961–2000. The suitability of the classification for describing climate elements at a given station was assessed according to the percentage of the circulation types, under which the probability distribution functions of these elements differed from the rest of the values. The classification is deemed the most suitable for describing climate elements in Germany and its neighboring countries and least suitable in the Mediterranean, southeastern and Eastern Europe. The classification is more applicable to describing minimum and maximum temperature than precipitation, and its overall synoptic-climatological applicability is better in winter than in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anagnostopoulou C, Flocas H, Maheras P, Patrikas I (2004) Relationship between atmospheric circulation types over Greece and western-central Europe during the period 1958-97. Int J Climatol 24:1745–1758

    Google Scholar 

  • Baur F, Hess P, Nagel H (1944) Kalendar der Grosswetterlagen Europas 1881–1939. Bad Homburg, 35

  • Beaver S, Palazoglu A (2006) Cluster analysis of hourly wind measurements to reveal synoptic regimes affecting air quality. J Appl Meteorol Climatol 45:1710–1726

    Google Scholar 

  • Beck C, Philipp A, Streicher F (2016) The effect of domain size on the relationship between circulation type classifications and surface climate. Int J Climatol 36:2692–2709

    Google Scholar 

  • Black E (2012) The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. Int J Climatol 32:1654–1664

    Google Scholar 

  • Brázdil R, Chromá K, Púčik T, Černoch Z, Dobrovolný P, Dolák L, Kotyza O, Řezníčková L, Taszarek M (2020) The climatology of significant tornadoes in the Czech Republic. Atmosphere 11:689

    Google Scholar 

  • Brisson E, Demuzere M, Kwakernaak B, Van Lipzig NPM (2011) Relations between atmospheric circulation and precipitation in Belgium. Meteorog Atmos Phys 111:27–39

    Google Scholar 

  • Burlando M, Antonelli M, Ratto CF (2008) Mesoscale wind climate analysis identification of anemological regions and wind regimes. Int J Climatol 28:629–641

    Google Scholar 

  • Casado MJ, Pastor MA, Doblas-Reyes FJ (2010) Links between circulation types and precipitation over Spain. Phys Chem Earth, Parts A/B/C 35:437–447

    Google Scholar 

  • Cahynová M, Huth R (2009) Enhanced lifetime of atmospheric circulation types over Europe: fact or fiction? Tellus A 61:407–416

    Google Scholar 

  • Cahynová M, Huth R (2016) Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the COST733 catalogue. Int J Climatol 36:2743–2760

    Google Scholar 

  • Cony M, Martin L, Hernandez E, Del Teso T (2010) Synoptic patterns that contribute to extremely hot days in Europe. Atmósfera 23:295–306

    Google Scholar 

  • Cortesi N, Gonzales-Hidalgo JC, Trigo RM, Ramos AM (2014) Weather types and spatial variability of precipitation in the Iberian Peninsula. Int J Climatol 34:2661–2677

    Google Scholar 

  • Fleig AK, Tallaksen LM, James P, Hisdal H, Stahl K (2015) Attribution of European precipitation and temperature trends to changes in synoptic circulation. Hydrol Earth Syst Sci 19:3093–3107

    Google Scholar 

  • Gaffney SJ, Robertson AW, Smyth P, Camargo SJ, Ghil M (2007) Probabilistic clustering of extratropical cyclones using regression mixture models. Clim Dynam 29:423–440

    Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113:D20119

  • Hess P, Brezowsky H (1952) Katalog der Großwetterlagen Europas. Ber Dt Wetterd in der USZone 33

  • Hess P, Brezowsky H (1969) Katalog der Großwetterlagen Europas. 2. neu bearbeitete und ergänzte Auflage. Ber Dt Wetterd 15(113)

  • Hess P, Brezowsky H (1977) Katalog der Großwetterlagen Europas 1881–1976. 3. verbesserte und ergänzte Auflage. Ber Dt Wetterd 15(113)

  • Hoy A, Jaagus J, Sepp M, Matschullat J (2013a) Spatial response of two European atmospheric circulation classifications (data 1901–2010). Theor Appl Climatol 112:73–88

    Google Scholar 

  • Hoy A, Sepp M, Matschullat J (2013b) Atmospheric circulation variability in Europe and northern Asia (1901 to 2010). Theor Appl Climatol 113:105–126

    Google Scholar 

  • Hoy A, Sepp M, Matschullat J (2013c) Large-scale atmospheric circulation forms and their impact on air temperature in Europe and northern Asia. Theor Appl Climatol 113:643–658

    Google Scholar 

  • Hoy A, Schucknecht A, Sepp M, Matschullat J (2014) Large-scale synoptic types and their impact on European precipitation. Theor Appl Climatol 116:19–35

    Google Scholar 

  • Hoy A, Hänsel S, Maugeri M (2020) An endless summer: 2018 heat episodes in Europe in the context of secular temperature variability and change. Int J Climatol:1–22. https://doi.org/10.1002/joc.6582

  • Huth R (2010) Synoptic-climatological applicability of circulation classifications from the COST733 collection: first results. Phys Chem Earth, Parts A/B/C 35:388–394

    Google Scholar 

  • Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns. Ann N Y Acad Sci 1146:105–152

    Google Scholar 

  • Huth R, Beck C, Kučerová M (2016) Synoptic-climatological evaluation of the classifications of atmospheric circulation patterns over Europe. Int J Climatol 36:2710–2726

    Google Scholar 

  • James PM (2007) An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theor Appl Climatol 88:17–42

    Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Google Scholar 

  • Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191

    Google Scholar 

  • Kostopoulou E, Jones PD (2007) Comprehensive analysis of the climate variability in the eastern Mediterranean. Part II: relationships between atmospheric circulation patterns and surface climatic elements. Int J Climatol 27:1351–1371

    Google Scholar 

  • Krüger O (2014) Observational evidence for human impact on aerosol cloud-mediated processes in the Baltic region. Oceanologia 56:205–222

    Google Scholar 

  • Kučerová M, Beck C, Philipp A, Huth R (2017) Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. Int J Climatol 37:2502–2521

    Google Scholar 

  • Kyselý J, Kakos V, Huth R, Buchtele J (2003) Atmosférická cirkulace a povodňové situace na Vltavě [atmospheric circulation and flood on the Vltava river; in Czech]. In: Bioklimatologické pracovné dni. Funkcia energetickej a vodnej bilancie v bioklimatických systémoch. http://www.cbks.cz/sbornikRackova03/sections/posters/Kysely.pdf. Accessed 16 June 2019

  • Kyselý J, Domonkos P (2006) Recent increase in persistence of atmospheric circulation over Europe: comparison with long-term variations since 1881. Int J Climatol 26:461–483

    Google Scholar 

  • Kyselý J (2007) Implications of enhanced persistence of atmospheric circulation for the occurrence and severity of temperature extremes. Int J Climatol 27:689–695

    Google Scholar 

  • Kyselý J (2008) Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: analysis over the 20th century. Glob Planet Change 62:147–163

    Google Scholar 

  • Kyselý J, Huth R (2008) Relationships of surface air temperature anomalies over Europe to persistence of atmospheric circulation patterns conductive to heat waves. Adv Geosci 14:243–249

    Google Scholar 

  • Migała K, Urban G, Tomczyński K (2016) Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation. Theor Appl Climatol 125:337–351

    Google Scholar 

  • Minářová J, Müller M, Clappier A, Hänsel S, Hoy A, Matschullat J, Kašpar M (2017a) Duration, rarity, affected area, and weather types associated with extreme precipitation in the Ore Mountains (Erzgebirge) region, Central Europe. Int J Climatol 37:4463–4477

    Google Scholar 

  • Minářová J, Müller M, Clappier A, Kašpar M (2017b) Characteristics of extreme precipitation in the Vosges Mountains region (North-Eastern France). Int J Climatol 37:4529–4542

    Google Scholar 

  • Nilsen IB, Stagge JH, Tallaksen LM (2017) A probabilistic approach for attributing temperature changes to synoptic type frequency. Int J Climatol 37:2990–3002

    Google Scholar 

  • Ortiz-García EG, Salcedo-Sanz S, Casanova-Mateo C, Paniagua-Tineo A, Portilla-Figueras JA (2012) Accurate local very short-term temperature prediction based on synoptic situation support vector regression banks. Atmos Res 107:1–8

    Google Scholar 

  • Ortiz-García EG, Salcedo-Sanz S, Casanova-Mateo C (2014) Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos Res 139:128–136

    Google Scholar 

  • Philipp A, Beck C, Huth R, Jacobeit J (2016) Development and comparison of circulation type classifications using the COST 733 dataset and software. Int J Climatol 36:2673–2691

    Google Scholar 

  • Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Fettweis X, Huth R, James P, Jourdain S, Kreienkamp F, Krennert T, Lykoudis S, Michalides SC, Pianko-Kluczynska K, Post P, Álvarez DR, Schiemann R, Spekat A, Tymvios FS (2010) COST733cat – a database of weather and circulation type classifications. Phys Chem Earth 35:360–373

    Google Scholar 

  • Planchon O, Quénol H, Dupont N, Corgne S (2009) Application of the Hess-Brezowsky classification to the identification of weather patterns causing heavy winter rainfall in Brittany (France). Nat Hazards Earth Syst Sci 9:1161–1173

    Google Scholar 

  • Planchon O, Quénol H, Irimia L, Patriche C (2015) European cold wave during February 2012 and impacts in wine growing regions of Moldavia (Romania). Theor Appl Climatol 120:469–478

    Google Scholar 

  • Rimkus E, Kazys J, Butkute S, Gecaite I (2014) Snow cover variability in Lithuania over the last 50 years and its relationship with large-scale atmospheric circulation. Bor Environ Res 19:337–351

    Google Scholar 

  • Schiemann R, Frei C (2010) How to quantify the resolution of surface climate by circulation types: an example for Alpine precipitation. Phys Chem Earth, Parts A/B/C 35:403–410

    Google Scholar 

  • Seibert P, Frank A, Formayer H (2007) Synoptic and regional patterns of heavy precipitation in Austria. Theor Appl Climatol 87:139–153

    Google Scholar 

  • Sickmöller M, Blender R, Fraedrich K (2000) Observed winter cyclone tracks in the northern hemisphere in re-analysed ECMWF data. Q J Royal Meteorol Soc 126:591–620

    Google Scholar 

  • Sulikowska A, Wypych A (2020) How Unusual were June 2019 Temperatures in the context of European climatology? Atmosphere 11:697

    Google Scholar 

  • Tveito OE (2010) An assessment of circulation type classifications for precipitation distribution in Norway. Phys Chem Earth, Parts A/B/C 35:395–402

    Google Scholar 

  • Unkašević M, Tošić I (2009) An analysis of heat waves in Serbia. Glob Planet Change 65:17–26

    Google Scholar 

  • Ustrnul Z (2006) Spatial differentiation of air temperature in Poland using circulation types and GIS. Int J Climatol 26:1529–1546

    Google Scholar 

  • Ustrnul Z, Czekierda D, Wypych A (2010) Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Phys Chem Earth, Parts A/B/C 35:429–436

    Google Scholar 

  • Vallorani R, Bartolini G, Betti G, Crisci A, Gozzini B, Grifoni D, Iannuccilli M, Messeri A, Messeri G, Morabito M, Maracchi G (2018) Circulation type classifications for temperature and precipitation stratification in Italy. Int J Climatol 38:915–931

    Google Scholar 

  • Wapler K, James P (2015) Thunderstorm occurrence and characteristics in Central Europe under different synoptic conditions. Atmos Res 158:231–244

    Google Scholar 

  • Werner PC, Gerstengarbe FW (2010) Katalog der Grosswetterlagen Europas (1881–2009) nach Paul Hess und Helmut Brezowsky, 7., verbesserte und ergänzte Auflage.[Catalog of Large Weather Conditions of Europe (1881–2009), after Paul Hess and Helmut Brezowsky, 7th, Improved and Completed Edition]. PIK Report 119. PIK, Potsdam

  • Wypych A, Ustrnul Z, Sulikowska A, Chmielewski FM, Bochenek B (2017) Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int J Climatol 37:3340–3352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Sýkorová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sýkorová, P., Huth, R. The applicability of the Hess–Brezowsky synoptic classification to the description of climate elements in Europe. Theor Appl Climatol 142, 1295–1309 (2020). https://doi.org/10.1007/s00704-020-03375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03375-1

Navigation