Skip to main content
Log in

Examples of tectonic overprints of magnetic fabrics in rocks of the Bohemian Massif and Western Carpathians

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The magnetic fabrics in sedimentary, volcanic, and plutonic rocks primarily originate during deposition, lava or ash flow, and magma flow, respectively. During later rock development, these magnetic fabrics can be overprinted by various processes among which regional metamorphism and ductile deformation tectonic in origin are probably the most frequent and important. During the overprinting, the degree of anisotropy in general increases with progressing deformation and the magnetic foliations and magnetic lineations are reoriented from the primary directions towards parallelism to the doubtless deformational fabric elements in the body considered or in surrounding rocks. Because of the second rank tensor character of the anisotropy of magnetic susceptibility (AMS) it is often difficult to recognize whether a particular magnetic fabric was overprinted or not. The identification techniques of the magnetic fabric overprints on the site scale were developed, which are based on the investigation of the relationship between the magnetic fabric and orientations of mesoscopic fabric elements whose origin is known (bedding, cleavage, metamorphic foliation, mineral lineation, fold axis, etc.) and on the investigation of fabric relationship between geological units of different origins, because the AMS can be measured with sufficient precision in virtually all rock types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Passchier and Trouw (2005)

Fig. 2

Compiled and adapted using Parés et al. (1999), Ramsay and Huber (1983), and Hrouda et al. (2009)

Fig. 3
Fig. 4

Adapted from Hrouda et al. (2009)

Fig. 5
Fig. 6
Fig. 7

Adapted from Chadima et al. (2006)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Adapted from Hrouda et al. (2002)

Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Almqvist BSG, Koyi H (2018) Bulk strain in orogenic wedges based on insights from magnetic fabrics in sandbox models. Geology 46(6):483–486

    Article  Google Scholar 

  • Benn K (1994) Overprinting of magnetic fabrics in granites by small strains: numerical modelling. Tectonophysics 233:153–162

    Article  Google Scholar 

  • Bouchez J-L, Hutton DWH, Stephens WE (eds) (1997) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic Publishers, Dordrecht, p 358

    Google Scholar 

  • Canon-Tapia E (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account. In: Martín-Hernández F, Luneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 205–225

  • Cháb J (1986) Structure of the Moravian-Silesian branch of the European Variscan orogeny (working hypothesis). Věst Ústř Úst Geol 61:113–119 (in Czech)

    Google Scholar 

  • Chadima M, Hansen A, Hirt A, Hrouda F and Siemes H (2004) Phyllosilicate preferred orientation as a control of magnetic fabric: evidence from neutron texture goniometry and low and high-field magnetic anisotropy (SE Rhenohercynian Zone of Bohemian Massif). In: Martín-Hernández F, Luneburg CM, Aubourg C and Jackson M (eds) 2004. Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 69–76

  • Chadima M, Hrouda F, Melichar R (2006) Magnetic fabric study of the SE Rhenohercynian Zone (Bohemian Massif): implications for dynamics of the Paleozoic accretionary wedge. Tectonophysics 418(2006):93–109

    Article  Google Scholar 

  • Čížek P, Tomek Č (1991) Large-scale thin-skinned tectonics in the Eastern boundary of the Bohemian Massif. Tectonics 10(2):273–286

    Article  Google Scholar 

  • Dvořák J (1962) Palaeogeography and tectonics of the Nízký Jeseník Mts. (in Czech). Zprávy Slezského Ústavu v Opavě 123:8–11

    Google Scholar 

  • Dvořák J (1973) Synsedimentary tectonics of the Palaeozoic of the Drahany Upland (Sudeticum, Moravia, Czechoslovakia). Tectonophysics 17:359–391

    Article  Google Scholar 

  • Dvořák J (1995) Moravo-Silezian zone: stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 477–489

    Chapter  Google Scholar 

  • Dvořák J, Paproth E (1969) Über die Position und die Tektogenese des Rhenoherzynikums und des Sudetikums in den mitteleuropäischen Varisziden. Neues Jahrb Geol Paläontol, Monatsh 2:65–88

    Google Scholar 

  • Dvořák J, Wolf M (1979) Thermal metamorphism in the Moravian Palaeozoic (Sudeticum, Č.S.S.R). N Jb Geol Palaont Mh 10:596–607

    Google Scholar 

  • Franců E, Franců J, Kalvoda J (1999) Illite crystallinity and vitrinite reflectance in Paleozoic siliciclastics in the SE Bohemian Massif as evidence of thermal history. Geol Carpath 50(5):365–372

    Google Scholar 

  • Friedrich D, Hrouda F, Chlupáčová M (1995) Relationship between paramagnetic and ferrimagnetic anisotropies in selected specimens of the KTB pilot borehole and its vicinity (German part of the Bohemian massif). Sci Drill 5:3–15

    Google Scholar 

  • Garcia-Lasanta C, Izquierdo-Llaval E, Roman-Berdiel T (2017) Analisis de la fabrica magnetica en modelos analogicos de arcillas. Geogaceta 61:103–106

    Google Scholar 

  • Graham JW (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart JS, Smith TJ (eds) The earth beneath the continents. Am Geophys Union, Geophys Monogr, vol 10, pp 627–648

  • Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. J Geol Soc Lond 158:137–150

    Article  Google Scholar 

  • Havíř J (1998) Stress and strain fields in the selected regions of the eastern Bohemian Massif. Ph.D. Thesis, Masaryk University, Brno (in Czech)

  • Henry B (1977) Relations entre déformations et propriétés magnétiques dans des roches volcaniques des Alpes francaises. Mem BRGM 91:79–86

    Google Scholar 

  • Hrouda F (1976) The origin of cleavage in the light of magnetic anisotropy investigations. Phys Earth Planet Inter 13:132–142

    Article  Google Scholar 

  • Hrouda F (1978) The magnetic fabric in some folds. Phys Earth Planet Inter 17:89–97

    Article  Google Scholar 

  • Hrouda F (1979) The strain interpretation of the magnetic anisotropy in rocks of the Nízký Jeseník Mountains (Czechoslovakia). Sbor geol Věd řada UG 16:27–62

    Google Scholar 

  • Hrouda F (1981) On the superposition of regional slaty cleavage on folded strata and its reflection in magnetic anisotropy. Čas miner geol 26:341–348

    Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hrouda F (1991) Models of magnetic anisotropy variation in sedimentary sheets. Tectonophysics 186:203–210

    Article  Google Scholar 

  • Hrouda F (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys Earth Planet Inter 77:237–249

    Article  Google Scholar 

  • Hrouda F (2009) Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard AMS measurement in variable low fields I: theory. Tectonophysics 466:114–122. https://doi.org/10.1016/j.tecto.2008.05.026

    Article  Google Scholar 

  • Hrouda F (2011) Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophys J Int 187:1259–1269

    Article  Google Scholar 

  • Hrouda F, Chlupáčová M (1980) The magnetic fabric in the Nasavrky massif. Čas Miner Geol 25:17–27

    Google Scholar 

  • Hrouda F, Hrušková L (1990) On the detection of weak bedding parallel strain by magnetic anisotropy: a mathematical model study. Stud Geophys Geod 34:327–341

    Article  Google Scholar 

  • Hrouda F, Ježek J (1999) Magnetic anisotropy indications of deformations associated with diagenesis. In: Tarling DH, Turner P (eds) Palaeomagnetism and diagenesis in sediments, vol 1999. Geological Society, London, Special Publications, 151, pp 127–137

  • Hrouda F, Ježek J (2014) Frequency-dependent AMS of rocks: a tool for the investigation of the fabric of ultrafine magnetic particles. Tectonophysics 629(2014):27–38

    Article  Google Scholar 

  • Hrouda F, Kahan Š (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mts. (N Slovakia). J Struct Geol 13:431–442

    Article  Google Scholar 

  • Hrouda F, Přichystal A (1995) Magnetic fabric relationship between Palaeozoic volcanic and sedimentary rocks in the Nízký Jeseník Mts. (NE Moravia). J Czech Geol Soc 40:91–102

    Google Scholar 

  • Hrouda F, Janák F, Rejl L (1978) Magnetic anisotropy and ductile deformation of rocks in zones of progressive regional metamorphism. Gerl Beitr Geophys 87:126–134

    Google Scholar 

  • Hrouda F, Jacko S, Hanák J (1988) Parallel magnetic fabrics in metamorphic, granitoid and sedimentary rocks of the Branisko and Čierna Hora Mountains (E Slovakia) and their tectonometamorphic control. Phys Earth Planet Inter 51:271–289

    Article  Google Scholar 

  • Hrouda F, Putiš M, Madarás J (2002) The Alpine overprints of the magnetic fabrics in the basement and cover rocks of the Veporic Unit (Western Carpathians, Slovakia). Tectonophysics 359:271–288

    Article  Google Scholar 

  • Hrouda F, Krejčí O, Potfaj M, Stráník Z (2009) Magnetic fabric and weak deformation in sandstones of accretionary prisms of the Flysch and Klippen Belts of the Western Carpathians: mostly offscraping indicated. Tectonophysics 479:254–270

    Article  Google Scholar 

  • Hrouda F, Chadima M, Ježek J, Pokorný J (2017) Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic sub-fabrics of some minerals: an introductory study. Geophys J Int 208:385–402

    Article  Google Scholar 

  • Jackson M (1991) Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. PAGEOPH 136:1–28

    Article  Google Scholar 

  • Jelínek V (1981) Characterization of magnetic fabric of rocks. Tectonophysics 79:T63–T67

    Article  Google Scholar 

  • Kalvoda J (1995) Devonian sedimentary basins in the eastern margin of Avalonia, Moravia (in Czech). Geol Výzk Mor Slez R 1994:48–50

    Google Scholar 

  • Khan MA (1962) The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. J Geophys Res 67:2873–2885

    Article  Google Scholar 

  • Kukal Z (1977) Sedimentological rersearch of the Palaeozoic of the western part of the Nízký Jeseník Mts. (in Czech). Archive of Geological Survey, Prague

  • Martín-Hernández F, Ferré EC (2007) Separation of paramagnetic and ferrimagnetic anisotropies: a review. J Geophys Res 112:B03105. https://doi.org/10.1029/2006JB004340

    Article  Google Scholar 

  • Martín-Hernández F, Hirt AM (2004) A method for the separation of paramagnetic, ferrimagnetic and haematite magnetic subfabrics using high-field torque magnetometry. Geophys J Int 157:117–127

    Article  Google Scholar 

  • Maštera L (1975) Lithology of the Hradec Greywackes in the Nízký Jeseník Mts. (in Czech). Archive of Geological Survey, Brno

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Melichar R (1996) Tectonics of the eastern margin of the Bohemian Massif, new interpretation of the Moldanubian Thrust. Geol Výzk Mor Slez R 1995:67–70 (in Czech)

    Google Scholar 

  • Novotný M, Štelcl J (1966) Problems of the Jeseník Amphibolite Body in the Hrubý Jeseník Mts. Paleovulcanites of the Bohemian Massif. Praha 1966:101–106

  • Orel P (1973) Tectonic and structural problems of the Palaeozoic of the Jeseník Block of the Bohemian Massif in relation to mineralization processes (in Czech). Charles University in Prague, Faculty of Sciences

    Google Scholar 

  • Owens WH (1974) Mathematical studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics 24:115–131

    Article  Google Scholar 

  • Parés JM (2015) Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rocks. Front Earth Sci. https://doi.org/10.3389/feart.2015.00004

    Article  Google Scholar 

  • Parés JM, van der Pluijm BA, Dinares-Turell J (1999) Evolution of magnetic fabrics during inspicient deformation of mudrock (Pyrenees, northern Spain). Tectonophysics 307:1–14

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin

    Google Scholar 

  • Píchová E (1975). Physical properties of rocks of the Nízký Jeseník Mts (in Czech). Thesis, Charles University in Prague

  • Rajlich P (1990) Strain and tectonic styles related to Variscan transpression and transtension in the Moravo-Silesian Culmian basin, Bohemian Massif, Czechoslovakia. Tectonophysics 174:351–367

    Article  Google Scholar 

  • Ramsay JG, Huber MI (1983) The techniques of modern structural geology, 1. Strain analysis. Academic Press, London, p 307

    Google Scholar 

  • Rees AI (1983) Experiments on the production of transverse grain alignment in a sheared dispersion. Sedimentology 30:437–448

    Article  Google Scholar 

  • Rees AI, Woodall WA (1975) The magnetic fabric of sand and sandstones. Earth Planet Sci Lett 25:121–130

    Article  Google Scholar 

  • Schulmann K, Gayer R (2000) A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc Lond 157:401–416

    Article  Google Scholar 

  • Stacey FD (1960) Magnetic anisotropy of igneous rocks. J Geophys Res 65:2429–2442

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, p 217

    Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Czech Science Foundation (Project 18-03160S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Hrouda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrouda, F., Chadima, M. Examples of tectonic overprints of magnetic fabrics in rocks of the Bohemian Massif and Western Carpathians. Int J Earth Sci (Geol Rundsch) 109, 1321–1336 (2020). https://doi.org/10.1007/s00531-019-01786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01786-8

Keywords

Navigation