Skip to main content
Log in

Common snowdrop as a climate change bioindicator in Czechia

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The phenological response to climate change differs among species. We examined the beginning of flowering of the common snowdrop (Galanthus nivalis) in connection with meteorological variables in Czechia in the period 1923–2021. The long-term series were analyzed from phenological and meteorological stations of the Czech Hydrometeorological Institute (CHMI). Temporal and spatial evaluation (using Geographic Information System) in timing of beginning of flowering (BBCH 61) of G. nivalis was investigated under urban and rural settings. Furthermore, the detailed analysis of selected meteorological variables to onset of G. nivalis flowering was performed. Moreover, the trends (using Mann–Kendall test) and Pearson’s correlation coefficients between phenological phase and meteorological variable were calculated. The main finding of this study was that the trend of the beginning of flowering of the common snowdrop during the studied period (1923–2021) is negative, and it varies in urban and rural environments. The results showed most significant acceleration of the beginning of flowering of G. nivalis by − 0.20 day year−1 in urban area and by − 0.11 day year−1 in rural area. Above that, a major turning point occurred between 1987 and 1988 (both, in phenological observations and meteorological variables), and the variability of the beginning of flowering is significantly higher in the second period 1988–2021. On top of, the study proved that the beginning of flowering of G. nivalis closely correlated with number of days with snow cover above 1 cm (December–March) at both types of stations (urban and rural), and with mean air temperature in February, maximum air temperature in January, and minimum air temperature in March. The Mann–Kendall test showed a reduction in the number of days with snow cover above 1 cm (December–March) during 99 years period at Klatovy station (a long-term time series) by − 0.06 day year−1, i.e., by − 5.94 days per the whole period. Conversely, air temperatures increase (maximum and minimum air temperature by 0.03 °C year−1 (2.97 °C per the whole period) and average air temperature by 0.02 °C year−1 (1.98 °C per the whole period)). Thus, our results indicate significant changes in the beginning of flowering of G. nivalis in Czechia as a consequence of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738

    Article  Google Scholar 

  • Anonymous (2009) Methodical instructions number 10 for phenological stations – wild plants. CHMI, Prague

    Google Scholar 

  • Bartošová L, Fischer M, Balek J, Bláhová M, Kudláčková L, Chuchma F, Hlavinka P, Možný M, Zahradníček P, Wall N, Hayes M, Hain C, Anderson M, Wagner W, Žalud Z, Trnka M (2022a) Validity and reliability of drought reporters in estimating soil water content and drought impacts in central Europe, Agricultural and Forest Meteorology, Volume 315, 2022. ISSN 108808:0168–1923. https://doi.org/10.1016/j.agrformet.2022.108808

    Article  Google Scholar 

  • Bartošová L, Dížková P, Bauerová J, Hájková L, Fischer M, Balek J, Bláhová M, Možný M, Zahradníček P, Štěpánek P, Žalud Z, Trnka M (2022b) Phenological response of flood plain forest ecosystem species to climate change during 1961–2021. Atmosphere 2022(13):978. https://doi.org/10.3390/atmos13060978

    Article  Google Scholar 

  • Büntgen U, Piermattei A, Krusic PJ, Esper J, Sparks T, Crivellaro A (2022) Plants in the UK flower a month earlier under recent warming. Proc R Soc B 289:20212456. https://doi.org/10.1098/rspb.2021.2456

    Article  Google Scholar 

  • Chuine I, Yiou P, Viovy N et al (2004) Grape ripening as a past climate indicator. Nature 432:289–290

    Article  CAS  Google Scholar 

  • Coufal L, Houška V, Reitschlager JD, Valter J, Vráblík T (2004) Phenological atlas, CHMI, 1st edition, ISBN 80-86690-21-0, 204, 204 pp

  • Hájková L, Kožnarová V, Možný M, Bartošová L (2020) Influence of climate change on flowering season of birch in the Czech Republic. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01869-1

    Article  Google Scholar 

  • Hájková L, Možný M, Oušková V, Bartošová L, Dížková P, Žalud Z (2021) Meteorological variables that affect beginning of flowering of the winter oilseed rape in the Czech Republic. Atmosphere 12(1444):311. https://doi.org/10.3390/atmos12111444

    Article  Google Scholar 

  • Hájková L et al. (2012) Atlas of phenological conditions in Czechia. 1st edition Prague-Olomouc, CHMI – Palackého University. ISBN 978–80–86690–98–8, ISBN (Palackého University) 978-80-244-3005-8, 311 pp

  • https://www.ipcc.ch/reports. (n.d.). Accessed 1 Sept 2022

  • Kalvậne G, Romanovskaja D, Briede A (2009) Bakšiené E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Clim Res 39:209–219. https://doi.org/10.3354/cr00813

    Article  Google Scholar 

  • Langvall O, Löfvenius MO (2021) Long-term standardized forest phenology in Sweden: a climate change indicator. Int J Biometeorol 65:381–391. https://doi.org/10.1007/s00484-019-01817-8

    Article  Google Scholar 

  • Libiseller C, Grimvall A (2002) Performance of partial Mann Kendall tests for trend detection in the presence of covariates. Environmetrics 13:71–84

    Article  CAS  Google Scholar 

  • Meier U (ed) (1997) Growth stages of mono-and dicotyledonous plants. BBCH monograph. Federal Biological Research Centre for Agriculture and Forestry, Blackwell Wissenschafts-Verlag, Berlin

  • Menzel A (2000) Trend in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  CAS  Google Scholar 

  • Menzel A (2003) Trends in phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263

    Article  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666

    Google Scholar 

  • Menzel A et al (2006) European phenological response to climate change matches the warming patterns. Glob Change Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193x

    Article  Google Scholar 

  • Menzel A (1997) Phaenologie von Waldbaumen unter sich andernden Klimabedingungen Auswertung der Beobachtungen in den Internationalen Phaenologischen Garten und Moglichkeiten der Modellierung von Phaenodaten. ForstlicheForschungsberichte 164, Forest Faculty, Munchen

  • Poikolainen J, Tolvanen A, Karhu J, Kubin E (2016) Seventeen-year trends in spring and autumn phenophases of Betula pubescens in a boreal environment. Int J Biometeorol 60:1227–1236. https://doi.org/10.1007/s00484-015-1118-3

    Article  Google Scholar 

  • Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66

    Article  CAS  Google Scholar 

  • Snopková Z, Hýrošová T (2017) Snow cover and its influence on the beginning of flowering of snowdrop (Galanthus nivalis L) at the international phenological station (GPM) in Banská Bystrica over the period from 2003 to 2017. In Šiška, B. et al.: Snow an ecological phenomenon Smolenice, Slovakia, 19th – 21st September 2017

  • Sparks TH, Mizera T, Wójtowicz W, Tryjanowski P (2012) Synchrony in the phenology of a culturally iconic spring flower. Int J Biometeorol 56:407–409. https://doi.org/10.1007/s00484-011-0435-4

    Article  Google Scholar 

  • Spieksma FTM, Emberlin J, Hjelmroos M, Jager S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trend and fluctuations in annual quantities and the starting dates of the season. Grana 34:51–37

    Article  Google Scholar 

  • Tolasz R, Míková T, Valeriánová A, & Voženílek V (2007) Climate atlas of Czechia. Prague/Olomouc: CHMI/UPOL. 1st edition. 255 pp

  • Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61(11):2853–2862. https://doi.org/10.1093/jxb/erq165

    Article  CAS  Google Scholar 

  • Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ 733:137782. https://doi.org/10.1016/j.scitotenv.2020.137782

    Article  CAS  Google Scholar 

  • Whitfield J (2001) The budding amateurs. Nature 414:578–579

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the project SustES—Adaptation Strategies for the Sustainability of Ecosystem Services and Food Security in Adverse Natural Conditions (CZ.02.1.01/0.0/0.0/16_019/0000797) and by the Technology Agency of the Czech Republic Project No. SS02030018 (DivLand) and Project No. SS02030040 (PERUN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Hájková.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hájková, L., Možný, M., Oušková, V. et al. Common snowdrop as a climate change bioindicator in Czechia. Int J Biometeorol 67, 465–473 (2023). https://doi.org/10.1007/s00484-023-02426-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-023-02426-2

Keywords

Navigation