Skip to main content
Log in

Magnetic fabrics of rhyolite ignimbrites reveal complex emplacement dynamics of pyroclastic density currents, an example from the Altenberg–Teplice Caldera, Bohemian Massif

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Anisotropy of Magnetic Susceptibility (AMS) is commonly used to infer the flow dynamics, source areas, and post-emplacement processes of pyroclastic density currents (PDC) of young calderas (i.e., Cenozoic). In older calderas, the primary record is often obscured by post-emplacement deformation and/or long-term erosion. Here, we focus on the ~314–313 Ma welded ignimbrites inside the Altenberg–Teplice Caldera (ATC; Bohemian Massif). The small-volume, moderately welded ignimbrites emplaced prior to caldera-forming eruption yield a generally westward flow direction as determined from the imbrication of the magmatic and magnetic foliation plane. Their eruptive vents were located along the eastern margin of the future caldera. The most voluminous high-grade ignimbrites, products of the caldera-forming event, indicate a high degree of welding and rheomorphic ductile folding that obscured the primary flow fabrics. Based on the fabric pattern, published radiometric and field geology data from the ATC, we interpret that these ignimbrites were sourced from a dike swarm along the northwestern caldera rim. The PDCs then flowed across the subsiding caldera toward the south and south-southeast, where extra-caldera ignimbrites are exposed. The final trap-door caldera collapse triggered the emplacement of the microgranite ring dikes. These dikes, along with the post-caldera granites, may have driven a local resurgence along the eastern caldera rim. As exemplified by the ATC, the AMS fabric can be applied successfully to much older caldera ignimbrites including those with a high degree of welding and rheomorphism to interpret flow direction, deposition, emplacement, and post-emplacement dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Datasets for this research are directly included in this paper and are available in the Supplementary information files and online through the Mendeley Data (https://data.mendeley.com/datasets/yhn288f2rc/3).

References

  • Ade-Hall JM, Palmer HC, Hubbard TP (1971) The magnetic and opaque petrological response of basalts to regional hydrothermal alteration. Geophys J Int 24:137–174

    Article  Google Scholar 

  • Agrò A, Zanella E, Le Pennec JL, Temel A (2015) Magnetic fabric of ignimbrites: a case study from the Central Anatolian Volcanic Province. Geol Soc London Spec Publ 396:159–175

    Article  Google Scholar 

  • Andrews GDM, Branney MJ (2005) Folds, fabrics, and kinematic criteria in rheomorphic ignimbrites of the Snake River Plain, Idaho: insights into emplacement and flow. GSA Field Guide 6:311–328

    Google Scholar 

  • Baas JH, Hailwood EA, McCaffrey WD, Kay M, Jones R (2007) Directional petrological characterisation of deep-marine sandstones using grain fabric and permeability anisotropy: methodologies, theory, application and suggestions for integration. Earth-Sci Rev 82:101–142

    Article  Google Scholar 

  • Baer EM, Fisher RV, Fuller M, Valentine G (1997) Turbulent transport and deposition of the Ito pyroclastic flow: determinations using anisotropy of magnetic susceptibility. J Geophys Res Solid Earth 102:22565–22586

    Article  Google Scholar 

  • Benek R (1991) Aspects of volume calculation of paleovolcanic eruptive products – the example of the Teplice rhyolite (east Germany). Z Geol Wissenschaft 19:379–389

    Google Scholar 

  • Borradaile GJ, Werner T (1994) Magnetic anisotropy of some phyllosilicates. Tectonophysics 235:223–248

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London Mem 27:152

    Google Scholar 

  • Branney MJ, Kokelaar BP, McConnell BJ (1992) The Bad Step Tuff: a lava-like rheomorphic ignimbrite in a calc-alkaline piecemeal caldera, English Lake District. Bull Volcanol 54:187–199

    Article  Google Scholar 

  • Breiter K (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts. Central Europe Lithos 151:105–121

    Google Scholar 

  • Breiter K, Novák JK, Chlupáčová M (2001) Chemical evolution of volcanic rocks in the Altenberg-Teplice Caldera (Eastern Krušné hory Mts., Czech Republic, Germany). Geolines 13:17–22

    Google Scholar 

  • Breiter K, Hložková M, Korbelová Z, Galiová MV (2019) Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geol Rev 106:12–27

    Article  Google Scholar 

  • Cagnoli B, Tarling DH (1997) The reliability of anisotropy of magnetic susceptibility (AMS) data as flow direction indicators in friable base surge and ignimbrite deposits: Italian examples. J Volcanol Geotherm Res 75:309–320

    Article  Google Scholar 

  • Cañón-Tapia E (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys Earth Planet Inter 94:149–158

    Article  Google Scholar 

  • Cañón-Tapia E, Mendoza-Borunda R (2014) Magnetic petrofabric of igneous rocks: lessons from pyroclastic density current deposits and obsidians. J Volcanol Geotherm Res 289:151–169

    Article  Google Scholar 

  • Carvallo C, Muxworthy AR, Dunlop DJ (2006) First-order reversal curve (FORC) diagrams of magnetic mixtures: micromagnetic models and measurements. Phys Earth Planet in 154:308–322

    Article  Google Scholar 

  • Cas RAF, Wright HMN, Folkes CB, Lesti C, Porreca M, Giordano G, Viramonte JG (2011) The flow dynamics of an extremely large volume pyroclastic flow the 2.08-Ma Cerro Galán Ignimbrite NW Argentina and comparison with other flow types. B Volcanol 73:1583–1609.

    Article  Google Scholar 

  • Casas-García R, Rapprich V, Breitkreuz C, Svojtka M, Lapp M, Stanek K, Hofman M, Linnemann U (2019) Lithofacies architecture, composition, and age of the Carboniferous Teplice Rhyolite (German–Czech border): insights into the evolution of the Altenberg-Teplice Caldera. J Volcanol Geotherm Res 386:106662. https://doi.org/10.1016/j.jvolgeores.2019.106662

    Article  Google Scholar 

  • Černý J, Melichar R, Všianský D, Drahokoupil J (2020) Magnetic anisotropy of rocks: a new classification of inverse magnetic fabrics to help geological interpretations. J Geophys Res Solid Earth 125:e2020JB020426. https://doi.org/10.1029/2020JB020426

    Article  Google Scholar 

  • Chapin CE, Lowell GR (1979) Primary and secondary flow structures in ash-flow tuffs of the Gribbles Run paleovalley, central Colorado. GSA Spec Pap 180:137–154

    Google Scholar 

  • Druitt TH (1998) Pyroclastic density currents. Geol Soc Spec Publ 145:145–182

    Article  Google Scholar 

  • Druitt TH (2014) New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis. Bull Volcanol 76:794. https://doi.org/10.1007/s00445-014-0794-x

    Article  Google Scholar 

  • Druitt TH, Sparks RSJ (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, New York

    Book  Google Scholar 

  • Eisenreich M, Jeřábek M (1978) Geologic map of the Teplice rhyolite 1:10 000. Czech Geol Surv, Prague

  • Ellwood BB (1982) Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San Juan Mountains, southwest Colorado. Earth Planet Sci Lett 59:303–314

    Article  Google Scholar 

  • Fiala F (1960) The Teplice rhyolite between Krupka, Cínovec, Dubí and Mikulov and its surrounding rocks. Bull Geosci 26:445–494

    Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Fisher RV, Orsi G, Ort MH, Heiken G (1993) Mobility of a large-volume pyroclastic flow – emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220

    Article  Google Scholar 

  • Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Gambeta JH, Savian JF, Sommer CA, Trindade RIF (2021) Magnetic anisotropy of an ancient volcanic system: flow dynamics of post-collisional Ediacaran volcanism in southernmost Brazil. Precambrian Res 359:106209. https://doi.org/10.1016/j.precamres.2021.106209

    Article  Google Scholar 

  • Gee JS, Yu Y, Bowles J (2010) Paleointensity estimates from ignimbrites: an evaluation of the Bishop Tuff. Geochem Geophy Geosy 11:Q0301. https://doi.org/10.1029/2009GC002834

    Article  Google Scholar 

  • Geissman JW, Holm D, Harlan SS, Embree GF (2010) Rapid, high-temperature formation of large-scale rheomorphic structures in the 2.06 Ma Huckleberry Ridge Tuff, Idaho, USA. Geology 38:263–266

    Article  Google Scholar 

  • Giordano G, Cas RAF (2021) Classification of ignimbrites and their eruptions. Earth-Sci Rev 220:103697. https://doi.org/10.1016/j.earscirev.2021.103697

    Article  Google Scholar 

  • Giordano G, Porreca M, Musacchio P, Mattei M (2008) The Holocene Secche di Lazzaro phreatomagmatic succession (Stromboli, Italy): evidence of pyroclastic density current origin deduced by facies analysis and AMS flow directions. Bull Volcanol 70:1221–1236

    Article  Google Scholar 

  • Gnojek I, Sedlák J, Rapprich V, Skácelová Z, Mlčoch B, Krentz O, Casas-García R (2018) Structure of the Carboniferous Altenberg-Teplice Caldera (Eastern part of the Krušné hory/Erzgebirge Mts.) revealed by combined airborne and ground gamma-ray spectrometry. J Geosci 63:3–20

    Article  Google Scholar 

  • Gountié Dedzo M, Nédélec A, Nono A, Njanko T, Font E, Kamgang P, Njonfang E, Launeau P (2011) Magnetic fabrics of the Miocene ignimbrites from West-Cameroon: implications for pyroclastic flow source and sedimentation. J Volcanol Geotherm Res 203:113–132

    Article  Google Scholar 

  • Grégoire V, de Saint BM, Nédélec A, Bouchez JL (1995) Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophys Res Lett 22:2765–2768

    Article  Google Scholar 

  • Grégoire V, Darrozes J, Gaillot P, Nédélec A, Launeau P (1998) Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study. J Struct Geol 20:937–944

    Article  Google Scholar 

  • Gurioli L, Cioni R, Sbrana A, Zanellaà E (2002) Transport and deposition of pyroclastic density currents over an inhabited area: the deposits of the AD 79 eruption of Vesuvius at Herculaneum, Italy. Sedimentology 49:929–953

    Article  Google Scholar 

  • Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology 33:441–444

    Article  Google Scholar 

  • Haag MB, Sommer CA, Savian JF, Caselli AT, Moncinhatto TR, Hartmann GA, Ort MH, Poletti W, Trindade RIF (2021) AMS and rock magnetism in the Caviahue-Copahue Volcanic Complex (Southern Andes): emission center, flow dynamics, and implications to the emplacement of non-welded PDCs. J Volcanol Geotherm Res 416:107283. https://doi.org/10.1016/j.jvolgeores.2021.107283

    Article  Google Scholar 

  • Hargraves RB, Johnson D, Chan CY (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys Res Lett 18:2193–2196

    Article  Google Scholar 

  • Hargrove HR, Sheridan MF (1984) Welded tuffs deformed into megarheomorphic folds during collapse of the McDermitt caldera, Nevada-Oregon. J Geophys Res 89:8629–8638

    Article  Google Scholar 

  • Harrison RJ, Feinberg JM (2008) FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosy 9:Q05016. https://doi.org/10.1029/2008GC001987

    Article  Google Scholar 

  • Holub FV (1980) Petrografický posudek vzorků ze strukturního vrtu Le –127 (B). Final report of the project Barbora II, part F. Final Report of Geoindustria and Czech Geological Survey, Prague, pp 81

  • Holub FV (2009) Volcanic infilling of S part of the Altenberg-Teplice Caldera; ~700 m deep vertical profile through ignimbrites. Mineralogia Spec Pap 34, pp 14

  • Hong H, Chang L, Hayashida A, Roberts AP, Heslop D, Paterson GA, Kodoma K, Tauxe L (2019) Paleomagnetic recording efficiency of sedimentary magnetic mineral inclusions: implications for relative paleointensity determinations. J Geophys Res Solid Earth 124:6267–6279

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Jelínek V, Kropáček V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud Geophys Geod 22:50–62

    Article  Google Scholar 

  • Jiránek J, Kříbek B, Mlčoch B, Procházka J, Schovánek P, Schovánková D, Schulmann K, Šebesta J, Šimůnek Z, Štemprok K (1987) Complex geological evaluation of the Teplice Rhyolite. Unpublished report, Czech Geol Surv, Prague, pp 114

  • Knight M, Walker GPL, Ellwood BB, Diehl JF (1986) Stratigraphy, paleomagnetism, and magnetic fabric of the Toba tuffs: constraints on the sources and eruptive styles. J Geophys Res 91:10355–10382

    Article  Google Scholar 

  • Kobberger H, Schmincke G (1999) Deposition of rheomorphic ignimbrite D (Mogán Formation), Gran Canaria, Canary Islands, Spain. Bull Volcanol 60:465–485

    Article  Google Scholar 

  • LaBerge RD, Porreca M, Mattei M, Giordano G, Cas RAF (2009) Meandering flow of a pyroclastic density current documented by the anisotropy of magnetic susceptibility (AMS) in the quartz latite ignimbrite of the Pleistocene Monte Cimino volcanic centre (central Italy). Tectonophysics 466:64–78

    Article  Google Scholar 

  • Lamarche G, Froggatt PC (1993) New eruptive vents for the Whakamaru ignimbrite (Taupo volcanic zone) identified from magnetic fabric study. New Zeal J Geol Geophys 36:213–222

    Article  Google Scholar 

  • Le Pennec JL, Chen Y, Diot H, Froger JL, Gourgaud A (1998) Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study. Earth Planet Sci Lett 157:105–127

    Article  Google Scholar 

  • Lerner GA, Piispa EJ, Bowles JA, Ort MH (2022) Paleomagnetism and rock magnetism as tools for volcanology. Bull Volcanol 84. https://doi.org/10.1007/s00445-022-01529-9

  • Levy RA (1968) Principles of solid state physics. Academic Press, New York

    Google Scholar 

  • Lobin M (1986) Aufbau und Entwicklung des Permosiles im östlichen und mittleren Erzgebirge. Disertation. Bergakademie Freiberg

  • Novotný M, Skácelová Z, Mlčoch B (2010) Crustal structures beneath the Saxonian Granulite Massif the České středohoří and the Doupovské hory Mts. based on the depth-recursive tomography. J Geosci-Czech 55:187–199.

  • MacDonald WD, Palmer HC (1990) Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles Caldera, New Mexico, USA. Bull Volcanol 53:45–59

    Article  Google Scholar 

  • Martín-Hernández F, Hirt AM (2003) The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics 367:13–28

    Article  Google Scholar 

  • Mlčoch B, Skácelová Z (2010) Geometry of the Altenberg-Teplice Caldera revealed by the borehole and seismic data in its Czech part. J Geosci 55:217–229

    Google Scholar 

  • Moesta G (1928) Brüche und Porphyreffusionen im östlichen Erzgebirge. Z Dtsch Geol Ges 80:343–408

    Google Scholar 

  • Moncinhatto TR, Haag MB, Hartmann GA, Savian JF, Poletti W, Sommer CA, Caselli AT, Trindade RIF (2019) Mineralogical control on the magnetic anisotropy of lavas and ignimbrites: a case study in the Caviahue-Copahue field (Argentina). Geophys J Int 220:821–838

    Article  Google Scholar 

  • Opluštil S, Schmitz M, Cleal CJ, Martínek K (2016) A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth-Science Rev 154:301–335

    Article  Google Scholar 

  • Ort MH, Rosi M, Anderson CD (1999) Correlation of deposits and vent locations of the proximal Campanian Ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics. J Volcanol Geotherm Res 91:167–178

    Article  Google Scholar 

  • Ort MH, Orsi G, Pappalardo L, Fisher RV (2003) Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy. Bull Volcanol 65:55–72

    Article  Google Scholar 

  • Ort MH, De Silva SL, Jiménez CN, Jicha BR, Singer BS (2013) Correlation of ignimbrites using characteristic remanent magnetization and anisotropy of magnetic susceptibility, Central Andes, Bolivia. Geochem Geophy Geosy 14:141–157

    Article  Google Scholar 

  • Ort MH, Newkirk TT, Vilas JF, Vazquez JA (2015) Towards the definition of AMS facies in the deposits of pyroclastic density currents. Geol Soc Spec Publ 396:205–226

    Article  Google Scholar 

  • Petronis MS, Geissman JW (2009) Anisotropy of magnetic susceptibility data bearing on the transport direction of mid-tertiary regional ignimbrites, Candelaria Hills area, West-Central Nevada. Bull Volcanol 71:121–151

    Article  Google Scholar 

  • Pfeiffer T (2001) Vent development during the Minoan eruption (1640 BC) of Santorini, Greece, as suggested by ballistic blocks. J Volcanol Geoth Res 106:229–242

    Article  Google Scholar 

  • Pioli L, Lanza R, Ort MH, Rosi M (2008) Magnetic fabric, welding texture and strain fabric in the Nuraxi Tuff, Sardinia, Italy. Bull Volcanol 70:1123–1137

    Article  Google Scholar 

  • Platzman ES, Sparks RSJ, Cooper FJ (2020) Fabrics, facies, and flow through a large-volume ignimbrite: Pampa De Oxaya, Chile. Bull Volcanol 82:1–19

    Article  Google Scholar 

  • Potter DK, Stephenson A (1988) Singledomain particles in rocks and magnetic fabric analysis. Geophys Res Lett 15:1097–1100

    Article  Google Scholar 

  • Pueyo Anchuela O, Gil Imaz A, Gil-Peña I, Maestro A, Galindo-Zaldivar J, López-Martínez RJ, Soto R, Oliva-Urcia B (2014) Application of AMS for reconstruction of the geological evolution of recent volcanic systems: case of Deception Island (South Shetland Islands, Antarctica). Tectonophysics 626:69–85

    Article  Google Scholar 

  • Roberts AP, Cui Y, Verosub KL (1995) Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J Geophys Res Solid Earth 100:17909–17924

    Article  Google Scholar 

  • Roberts AP, Pike CR, Verosub KL (2000) First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res Solid Earth 105:28461–28475

    Article  Google Scholar 

  • Roche O, Buesch DC, Valentine GA (2016) Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption. Nat Commun 7:1–8

    Article  Google Scholar 

  • Roche O, Druitt TH (2001) Onset of caldera collapse during ignimbrite eruptions. Earth Planet Sci Lett 191:191–202

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Rochette P, Fillion G, Mattei JL, Dekkers MJ (1990) Magnetic transition at 30–34-Kelvin in pyrrhotite: insight into a widespread occurrence of the mineral in rocks. Earth Planet Sc Lett 98:319–328

    Article  Google Scholar 

  • Rochette P, Aubourg C, Perrin M (1999) Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics 307:219–234

    Article  Google Scholar 

  • Ross CS, Smith RL (1961) Ash-flow tuffs: their origin, geologic relations, and identification. US Geol Surv Prof Pap 366, pp 81. https://doi.org/10.3133/pp366

  • Schovánek P (2004) Explanations to the geological maps of the Czech Republic, scale 1:25,000, sheets 02–321 and 02–143. Czech Geol Surv, Prague

  • Sohn YK, Son M, Jeong JO, Jeon YM (2009) Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea). Sediment Geol 220:190–203

    Article  Google Scholar 

  • Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188

    Article  Google Scholar 

  • Sparks RSJ, Wilson L (1976) A model for the formation of ignimbrite by gravitational column collapse. J Geol Soc London 132:441–451

    Article  Google Scholar 

  • Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruptions. Geology 1:115–118

    Article  Google Scholar 

  • Štemprok M (2016) Drill hole CS-1 penetrating the Cínovec/Zinnwald granite cupola (Czech Republic): an A-type granite with important hydrothermal mineralization. J Geosci 61:395–423

    Article  Google Scholar 

  • Štemprok M, Holub FV, Novák JK (2003) Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. Bull Geosci 78:277–296

    Google Scholar 

  • Štemprok M, Dolejš D, Holub FV (2014) Late Variscan calc-alkaline lamprophyres in the Krupka ore district, Eastern Krusne hory/Erzgebirge: their relationship to Sn-W mineralization. J Geosci-Czech 59:41–68

    Article  Google Scholar 

  • Stephenson A (1994) Distribution anisotropy: two simple models for magnetic lineation and foliation. Phys Earth Planet Inter 82:49–53

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) Magnetic anisotropy of rocks. Chapman & Hall, London

    Google Scholar 

  • Tichomirowa M, Käßner A, Repstock A, Weber S, Gerdes A, Whitehouse M (2022) New CA-ID-TIMS U-Pb zircon ages for the Altenberg Teplice Volcanic Centre (ATVC) document discrete and coeval pulses of Variscan magmatic activity in the Eastern Erzgebirge (Eastern Variscan Belt). Int J Earth Sci. https://doi.org/10.1007/s00531-022-02204-2

  • Tomek F, Žák J, Svojtka M, Finger F, Waitzinger M (2019) Emplacement dynamics of syn-collapse ring dikes: an example from the Altenberg-Teplice caldera, Bohemian Massif. GSA Bull 131:997–1016

    Article  Google Scholar 

  • Tomek F, Opluštil S, Svojtka M, Špillar V, Rapprich V, Míková J (2022) Altenberg-Teplice Caldera sourced Westphalian fall tuffs in the central and western Bohemian Carboniferous basins (eastern Variscan belt). Int Geol Rev 64:441–468

    Article  Google Scholar 

  • Van Den Bogaard P, Schmincke HU (1984) The eruptive center of the late quaternary Laacher see tephra. Geol Rundsch 73:933–980

    Article  Google Scholar 

  • Verwey EJW, Haayman PW (1941) Electronic conductivity and transition point of magnetite (“Fe3O4”). Physica 8:979–987

    Article  Google Scholar 

  • Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88

    Article  Google Scholar 

  • Wang X, Roberts J, Schmidt P (2001) Flow directions of carboniferous ignimbrites, Southern New England Orogen, Australia, using anisotropy of magnetic susceptibility. J Volcanol Geotherm Res 110:1–25

    Article  Google Scholar 

  • Willcock MAW, Mattei M, Hasalová P, Giordano G, Cas RAF, Morelli C (2015) Flow behaviour in the intra-caldera setting: an AMS study of the large (>1290 km3) Permian Ora ignimbrite. Geol Soc London Spec Publ 396:177–204

    Article  Google Scholar 

  • Wilson CJN, Hildreth W (2000) The Bishop Tuff: new insights from eruptive stratigraphy. J Geol 105:407–439

    Article  Google Scholar 

  • Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a Late Palaeozoic coherent-pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). Geol Soc Spec Publ 302:199–221

    Article  Google Scholar 

  • Žáček V, Škoda R (2009) Petrology of crystalline rocks in the geothermal borehole GTPV-LT1 in Litoměřice. Geosci Res Rep 42:205–212

    Google Scholar 

  • Žák J, Tomek F, Svojtka M, Vacek F, Kachlík V, Ackerman A, Ježek J, Petronis MS (2021) Distributed crustal shortening followed by transpressional shearing in the Superior Province, northeastern Canada: a Late Archean analogy to modern accretionary plate margins? Precambrian Res 362:106322. https://doi.org/10.1016/j.precamres.2021.106322

    Article  Google Scholar 

Download references

Acknowledgements

The careful editorial handling by Mike Ort as well as the critical comments by Guido Giordano and an anonymous referee are highly appreciated. This manuscript is an integral part of the Ph.D. thesis of Petr Vitouš. We have benefited from discussions with Marion Tichomirowa, Bedřich Mlčoch, Marta Chlupáčová, Manuel Lapp, Jiří Žák, and Vladislav Rapprich. Milena Vostrá, Marta Tomková, and Jiří Petráček are thanked for laboratory assistance. State enterprises Czech forests (Lesy ČR) and Sachsen forests (Staatsbetrieb Sachsenforst) provided entrance and sampling permits on both sides of the border. Finally, we thank Geomet Ltd. for providing samples from their boreholes.

Funding

This manuscript was supported by the Czech Science Foundation grant 19-02177Y (Tomek), Czech Academy of Sciences institutional support RVO67985831 (Vitouš, Tomek), Charles University projects Cooperatio Programme (Research Area GEOL; Tomek), and Center for Geosphere Dynamics (UNCE/SCI/006; Vitouš, Tomek). Rock-magnetic (hysteresis and FORC) analyses were supported by National Science Foundation grants DMR-1523611 and DMR-2122108 (PREM) awarded to Drs. T. Timofeeva and G. Gallegos at New Mexico Highlands University. Petronis acknowledges the Fulbright program, which funded his visiting fellowship at Charles University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Vitouš.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial responsibility: M.H. Ort; Deputy Executive Editor: L. Pioli

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2410 KB)

Supplementary file2 (XLSX 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitouš, P., Tomek, F. & Petronis, M.S. Magnetic fabrics of rhyolite ignimbrites reveal complex emplacement dynamics of pyroclastic density currents, an example from the Altenberg–Teplice Caldera, Bohemian Massif. Bull Volcanol 84, 75 (2022). https://doi.org/10.1007/s00445-022-01577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01577-1

Keywords

Navigation