Skip to main content
Log in

Flash droughts in Central Europe and their circulation drivers

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Flash droughts, defined as events with unusually rapid onset and intensification, are emerging into the spotlight as dangerous subseasonal climatic phenomena capable of causing substantial socioenvironmental impacts. However, research on their spatiotemporal variability and major drivers in Central Europe has been limited thus far. This study used gridded soil moisture data from the SoilClim model for the region consisting of the Czech Republic, Slovakia and northern part of Austria in the 1961–2021 period. Established methods of flash drought detection were implemented and adapted to conduct their comprehensive spatiotemporal analysis. The gridded flash drought results were divided into four clusters using the Ward’s hierarchical agglomerative method. Individual flash drought episodes were delimited for each cluster, divided into three phases (onset, course, end) and investigated separately in terms of drivers, represented by three meteorological variables (precipitation, actual evapotranspiration, maximum temperature) and atmospheric circulation types based on the objective classification (derived from flow strength, direction and vorticity). The frequency of flash droughts slightly decreased in the winter half-year and slightly increased in the summer half-year, with substantial amplification in the April–June season. The increase was slower than in the case of seasonal droughts, being driven by the longer-term accumulation of water deficit. Circulation drivers exhibited much stronger and more direct influence in the summer half-year, particularly causing the onset of flash drought episodes during the predominance of anticyclonic types and absence of cyclonic types, while the course of flash drought episodes was also connected to increased temperatures and often connected to warm airflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data used in this study are available on request from the corresponding author.

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration (guidelines for computing crop water requirements), FAO irrigation and drainage paper No. 56. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Beck C, Philipp A, Jacobeit J (2015) Interannual drought index variations in Central Europe related to the large-scale atmospheric circulation—application and evaluation of statistical downscaling approaches based on circulation type classifications. Theor Appl Climatol 121(3):713–732. https://doi.org/10.1007/s00704-014-1267-z

    Article  Google Scholar 

  • Blenkinsop S, Jones PD, Dorling SR, Osborn TJ (2009) Observed and modelled influence of atmospheric circulation on central England temperature extremes. Int J Climatol 29(11):1642–1660. https://doi.org/10.1002/joc.1807

    Article  Google Scholar 

  • Büntgen U, Urban O, Krusic PJ, Rybníček M, Kolář T, Kyncl T, Ač A, Koňasová E, Čáslavský J, Esper J, Wagner S, Saurer M, Tegel W, Dobrovolný P, Cherubini P, Reinig F, Trnka M (2021) Recent European drought extremes beyond common era background variability. Nat Geosci 14(4):190–196. https://doi.org/10.1038/s41561-021-00698-0

    Article  Google Scholar 

  • Chen LG, Gottschalck J, Hartman A, Miskus D, Tinker R, Artusa A (2019) Flash drought characteristics based on U.S. drought monitor. Atmosphere 10(9):498. https://doi.org/10.3390/atmos10090498

    Article  Google Scholar 

  • Christian JI, Basara JB, Otkin JA, Hunt ED, Wakefield RA, Flanagan PX, Xiao X (2019) A methodology for flash drought identification: application of flash drought frequency across the United States. J Hydrometeorol 20(5):833–846. https://doi.org/10.1175/JHM-D-18-0198.1

    Article  Google Scholar 

  • Christian JI, Basara JB, Hunt ED, Otkin JA, Furtado JC, Mishra V, Xiao X, Randall RM (2021) Global distribution, trends, and drivers of flash drought occurrence. Nat Commun 12(1):6330. https://doi.org/10.1038/s41467-021-26692-z

    Article  Google Scholar 

  • Everitt BS, Landau S, Leese M (2001) Cluster analysis. Wiley, Hoboken

    Google Scholar 

  • Fleig AK, Tallaksen LM, Hisdal H, Hannah DM (2011) Regional hydrological drought in north-western Europe: linking a new regional drought area index with weather types. Hydrol Process 25(7):1163–1179. https://doi.org/10.1002/hyp.7644

    Article  Google Scholar 

  • Ford TW, Labosier CF (2017) Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric for Meteorol 247:414–423. https://doi.org/10.1016/j.agrformet.2017.08.031

    Article  Google Scholar 

  • Ford TW, Mcroberts DB, Quiring SM, Hall RE (2015) On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys Res Lett 42(22):9790–9798. https://doi.org/10.1002/2015GL066600

    Article  Google Scholar 

  • Hänsel S, Ustrnul Z, Łupikasza E, Skalak P (2019) Assessing seasonal drought variations and trends over Central Europe. Adv Water Resour 127:53–75. https://doi.org/10.1016/j.advwatres.2019.03.005

    Article  Google Scholar 

  • Haslinger K, Hofstätter M, Kroisleitner C, Schöner W, Laaha G, Holawe F, Blöschl G (2019) Disentangling drivers of Meteorological Droughts in the European Greater Alpine Region during the last two centuries. J Geophys Res Atmos 124(23):12404–12425. https://doi.org/10.1029/2018JD029527

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, De Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J-N (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hess P, Brezowsky H (1952) Katalog der Grosswetterlagen Europas; Berichte des DeutschenWetterdienstes in US-Zone 33. Bad Kissingen, Germany

    Google Scholar 

  • Hlavinka P, Trnka M, Balek J, Semerádová D, Hayes M, Svoboda M, Eitzinger J, Možný M, Fischer M, Hunt E, Žalud Z (2011) Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric Water Manag 98(8):1249–1261. https://doi.org/10.1016/j.agwat.2011.03.011

    Article  Google Scholar 

  • Hoell A, Parker B-A, Downey M, Umphlett N, Jencso K, Akyuz FA, Peck D, Hadwen T, Fuchs B, Kluck D, Edwards L, Perlwitz J, Eischeid J, Deheza V, Pulwarty R, Bevington K (2020) Lessons learned from the 2017 flash drought across the U.S. Northern Great Plains and Canadian prairies. Bull Am Meteorol Soc 101(12):E2171–E2185. https://doi.org/10.1175/BAMS-D-19-0272.1

    Article  Google Scholar 

  • Interdrought (2022) Available at: www.interdrought.cz. Accessed 5 May 2023

  • Ionita M, Tallaksen LM, Kingston DG, Stagge JH, Laaha G, Van Lanen HAJ, Scholz P, Chelcea SM, Haslinger K (2017) The European 2015 drought from a climatological perspective. Hydrol Earth Syst Sci 21(3):1397–1419. https://doi.org/10.5194/hess-21-1397-2017

    Article  Google Scholar 

  • Irannezhad M, Ahmadi B, Kløve B, Moradkhani H (2017) Atmospheric circulation patterns explaining climatological drought dynamics in the boreal environment of Finland, 1962–2011. Int J Climatol 37(S1):801–817. https://doi.org/10.1002/joc.5039

    Article  Google Scholar 

  • Ivchenko GI, Honov SA (1998) On the jaccard similarity test. J Math Sci 88(6):789–794

    Article  Google Scholar 

  • Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North Sea. Synoptic climatology branch memorandum no. 62. Meteorological Office, Bracknell

    Google Scholar 

  • Jin C, Luo X, Xiao X, Dong J, Li X, Yang J, Zhao D (2019) The 2012 flash drought threatened US Midwest agroecosystems. Chin Geogr Sci 29(5):768–783. https://doi.org/10.1007/s11769-019-1066-7

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kingston DG, Stagge JH, Tallaksen LM, Hannah DM (2015) European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J Clim 28(2):505–516. https://doi.org/10.1175/JCLI-D-14-00001.1

    Article  Google Scholar 

  • Lamb HH (1972) British Isles weather types and a register of the daily sequence of circu lation patterns 1861–1971. Geophysical Memoirs, London

    Google Scholar 

  • Lesinger K, Tian D (2022) Trends, variability, and drivers of flash droughts in the contiguous United States. Water Resour Res 58(9):e2022WR032186. https://doi.org/10.1029/2022WR032186

    Article  Google Scholar 

  • Lhotka O, Trnka M, Kyselý J, Markonis Y, Balek J, Možný M (2020) Atmospheric circulation as a factor contributing to increasing drought severity in Central Europe. J Geophys Res Atmos 125(18):e2019JD032269. https://doi.org/10.1029/2019JD032269

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Mckinnon KA, Rhines A, Tingley MP, Huybers P (2016) Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat Geosci 9(5):389–394. https://doi.org/10.1038/ngeo2687

    Article  Google Scholar 

  • Mo KC, Lettenmaier DP (2016) Precipitation deficit flash droughts over the United States. J Hydrometeorol 17(4):1169–1184. https://doi.org/10.1175/JHM-D-15-0158.1

    Article  Google Scholar 

  • Mozny M, Trnka M, Zalud Z, Hlavinka P, Nekovar J, Potop V, Virag M (2012) Use of a soil moisture network for drought monitoring in the Czech Republic. Theor Appl Climatol 107:99–111. https://doi.org/10.1007/s00704-011-0460-6

    Article  Google Scholar 

  • Okumura YM, Dinezio P, Deser C (2017) Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys Res Lett 44(22):11614–11623. https://doi.org/10.1002/2017GL075034

    Article  Google Scholar 

  • Osman M, Zaitchik BF, Badr HS, Christian JI, Tadesse T, Otkin JA, Anderson MC (2021) Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions. Hydrol Earth Syst Sci 25(2):565–581. https://doi.org/10.5194/hess-25-565-2021

    Article  Google Scholar 

  • Osman M, Zaitchik BF, Badr HS, Otkin J, Zhong Y, Lorenz D, Anderson M, Keenan TF, Miller DL, Hain C, Holmes T (2022) Diagnostic classification of flash drought events reveals distinct classes of forcings and impacts. J Hydrometeorol 23(2):275–289. https://doi.org/10.1175/JHM-D-21-0134.1

    Article  Google Scholar 

  • Otkin JA, Anderson MC, Hain C, Svoboda M, Johnson D, Mueller R, Tadesse T, Wardlow B, Brown J (2016) Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric for Meteorol 218–219:230–242. https://doi.org/10.1016/j.agrformet.2015.12.065

    Article  Google Scholar 

  • Otkin JA, Svoboda M, Hunt ED, Ford TW, Anderson MC, Hain C, Basara JB (2018) Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull Am Meteorol Soc 99(5):911–919. https://doi.org/10.1175/JHM-D-18-0171.1

    Article  Google Scholar 

  • Otkin JA, Zhong Y, Hunt ED, Christian JI, Basara JB, Nguyen H, Wheeler MC, Ford TW, Hoell A, Svoboda M, Anderson MC (2021) Development of a flash drought intensity index. Atmosphere 12(6):741. https://doi.org/10.3390/atmos12060741

    Article  Google Scholar 

  • Park Williams A, Cook BI, Smerdon JE, Bishop DA, Seager R, Mankin JS (2017) The 2016 Southeastern U.S. drought: an extreme departure from centennial wetting and cooling. J Geophys Res Atmos 122(20):10888–10905. https://doi.org/10.1002/2017JD027523

    Article  Google Scholar 

  • Parker T, Gallant A, Hobbins M, Hoffmann D (2021) Flash drought in Australia and its relationship to evaporative demand. Environ Res Lett 16(6):064033. https://doi.org/10.1088/1748-9326/abfe2c

    Article  Google Scholar 

  • Pendergrass AG, Meehl GA, Pulwarty R, Hobbins M, Hoell A, Aghakouchak A, Bonfils CJW, Gallant AJE, Hoerling M, Hoffmann D, Kaatz L, Lehner F, Llewellyn D, Mote P, Neale RB, Overpeck JT, Sheffield A, Stahl K, Svoboda M, Wheeler MC, Wood AW, Woodhouse CA (2020) Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat Clim Change 10(3):191–199. https://doi.org/10.1038/s41558-020-0709-0

    Article  Google Scholar 

  • Plavcová E, Kyselý J (2011) Evaluation of daily temperatures in Central Europe and their links to large-scale circulation in an ensemble of regional climate models. Tellus A Dyn Meteorol Oceanogr 63(4):763–781. https://doi.org/10.1111/j.1600-0870.2011.00514.x

    Article  Google Scholar 

  • Raziei T, Bordi I, Pereira LS, Corte-Real J, Santos JA (2012) Relationship between daily atmospheric circulation types and winter dry/wet spells in western Iran. Int J Climatol 32(7):1056–1068. https://doi.org/10.1002/joc.2330

    Article  Google Scholar 

  • Řehoř J, Brázdil R, Trnka M, Řezníčková L, Balek J, Možný M (2020) Regional effects of synoptic situations on soil drought in the Czech Republic. Theor Appl Climatol 141(3):1383–1400. https://doi.org/10.1007/s00704-020-03275-4

    Article  Google Scholar 

  • Řehoř J, Brázdil R, Lhotka O, Trnka M, Balek J, Štěpánek P, Zahradníček P (2021a) Precipitation in the Czech Republic in light of subjective and objective classifications of circulation types. Atmosphere 12(11):1536. https://doi.org/10.3390/atmos12111536

    Article  Google Scholar 

  • Řehoř J, Brázdil R, Trnka M, Fischer M, Balek J, Štěpánek P, Zahradníček P, Semerádová D, Bláhová M (2021b) Effects of climatic and soil data on soil drought monitoring based on different modelling schemes. Atmosphere 12(7):913. https://doi.org/10.3390/atmos12070913

    Article  Google Scholar 

  • Řehoř J, Brázdil R, Trnka M, Lhotka O, Balek J, Možný M, Štěpánek P, Zahradníček P, Mikulová K, Turňa M (2021c) Soil drought and circulation types in a longitudinal transect over central Europe. Int J Climatol 41(S1):E2834–E2850. https://doi.org/10.1002/joc.6883

    Article  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Shah J, Hari V, Rakovec O, Markonis Y, Samaniego L, Mishra V, Hanel M, Hinz C, Kumar R (2022) Increasing footprint of climate warming on flash droughts occurrence in Europe. Environ Res Lett 17(6):064017. https://doi.org/10.1088/1748-9326/ac6888

    Article  Google Scholar 

  • Spinoni J, Naumann G, Vogt JV, Barbosa P (2015) The biggest drought events in Europe from 1950 to 2012. J Hydrol Reg Stud 3:509–524

    Article  Google Scholar 

  • Štěpánek P, Zahradníček P, Farda A (2013) Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961 – 2010. Időjárás 117:123–141

    Google Scholar 

  • Svoboda M, Lecomte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83(8):1181–1190. https://doi.org/10.1175/1520-0477-83.8.1181

    Article  Google Scholar 

  • Theil H (1992) A rank-invariant method of linear and polynomial regression analysis. In: Raj B, Koerts J (eds) Henri Theil’s contributions to economics and econometrics: econometric theory and methodology. Springer Netherlands, Dordrecht

    Google Scholar 

  • Trnka M, Kocmánková E, Balek J, Eitzinger J, Ruget F, Formayer H, Hlavinka P, Schaumberger A, Horáková V, Možný M (2010) Simple snow cover model for agrometeorological applications. Agric for Meteorol 150:1115–1127. https://doi.org/10.1016/j.agrformet.2010.04.012

    Article  Google Scholar 

  • Trnka M, Brázdil R, Balek J, Semerádová D, Hlavinka P, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Dubrovský M, Eitzinger J, Fuchs B, Svoboda M, Hayes M, Žalud Z (2015) Drivers of soil drying in the Czech Republic between 1961 and 2012. Int J Climatol 35(9):2664–2675. https://doi.org/10.1002/joc.4167

    Article  Google Scholar 

  • Trnka M, Brázdil R, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Balek J, Semerádová D, Dubrovský M, Hlavinka P, Eitzinger J, Wardlow B, Svoboda M, Hayes M, Žalud Z (2015) Soil moisture trends in the Czech Republic between 1961 and 2012. Int J Climatol 35(13):3733–3747. https://doi.org/10.1002/joc.4242

    Article  Google Scholar 

  • Trnka M, Hlavinka P, Možný M, Semerádová D, Štěpánek P, Balek J, Bartošová L, Zahradníček P, Bláhová M, Skalák P, Farda A, Hayes M, Svoboda M, Wagner W, Eitzinger J, Fischer M, Žalud Z (2020) Czech drought monitor system for monitoring and forecasting agricultural drought and drought impacts. Int J Climatol 40(14):5941–5958. https://doi.org/10.1002/joc.6557

    Article  Google Scholar 

  • Wang L, Yuan X, Xie Z, Wu P, Li Y (2016) Increasing flash droughts over China during the recent global warming hiatus. Sci Rep 6(1):30571. https://doi.org/10.1038/srep30571

    Article  Google Scholar 

  • Wei J, Wang WG, Huang Y, Ding YM, Fu JY, Chen ZF, Xing WQ (2021) Drought variability and its connection with large-scale atmospheric circulations in Haihe River Basin. Water Sci Eng 14(1):1–16

    Article  Google Scholar 

  • Werner PC, Gerstengarbe FW (2010) Katalog der Großwetterlagen Europas (1881–2009) nach Paul Hess und Helmut Brezowsky. Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany

  • Wilhite DA (2000) Droughts as a natural hazard: concepts and definitions. Wilhite DA (ed) Drought: a global assessment, vol 1. London: Routledge.

    Google Scholar 

  • Zahradníček P, Trnka M, Brázdil R, Možný M, Štěpánek P, Hlavinka P, Žalud Z, Malý A, Semerádová D, Dobrovolný P, Dubrovský M, Řezníčková L (2015) The extreme drought episode of August 2011–May 2012 in the Czech Republic. Int J Climatol 35(11):3335–3352

    Article  Google Scholar 

  • Zhong L, Chen B, Wu C, Yeh PJF, Li J, Lv W, Zhao J, Zhou J (2022) Identification and risk assessment of flash drought in the Pearl River basin based on the standardized evaporative stress ratio. Theor Appl Climatol 150(3):1513–1529. https://doi.org/10.1007/s00704-022-04228-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Livia Labudova and Dr. Katarina Mikulova (Slovak Hydrometeorological Institute) and entire http://www.intersucho.sk for co-developing drought intensity data for Slovak Republic with the authors. We acknowledge American Journal Experts for English style corrections.

Funding

This research was funded by the Ministry of Education, Youth and Sports of the Czech Republic for SustES – Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions project ref. CZ.02.1.01/0.0/0.0/16_019/0000797. Jan Řehoř also received funding from Masaryk University within the MUNI/A/1323/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Řehoř.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

All the authors agree on the submission and publication of the paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Řehoř, J., Brázdil, R., Trnka, M. et al. Flash droughts in Central Europe and their circulation drivers. Clim Dyn 62, 1107–1121 (2024). https://doi.org/10.1007/s00382-023-06964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06964-8

Keywords

Navigation