Skip to main content
Log in

Fatty acid 16:1ω5 as a proxy for arbuscular mycorrhizal fungal biomass: current challenges and ways forward

  • Position and Opinion Papers
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Fatty acid biomarkers have emerged as a useful tool to quantify biomass of various microbial groups. Here we focus on the frequent use of the fatty acid 16:1ω5 as a biomarker for arbuscular mycorrhizal (AM) fungi in soils. We highlight some issues with current applications of this method and use several examples from the literature to show that the phospholipid fatty acid (PLFA) 16:1ω5 can occur in high concentrations in soils where actively growing AM fungi are absent. Unless the study includes a control where the contribution of other microbes can be estimated, we advocate for the use of the neutral lipid fatty acid (NLFA) 16:1ω5. This biomarker has higher specificity, is more responsive to shifts in AM fungal biomass, and quantification can be conducted along with PLFA analysis without doubling analytical efforts. We conclude by contrasting various methods used to measure AM fungal biomass in soil and highlight future research needs to optimize fatty acid analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benito-Carnero G, Gartzia-Bengoetxea N, Arias-González A, Rousk J (2021) Low-quality carbon and lack of nutrients result in a stronger fungal than bacterial home-field advantage during the decomposition of leaf litter. Funct Ecol 35:1783–1796

    Article  CAS  Google Scholar 

  • Bentivenga SP, Morton JB (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Natl Acad Sci 93:5659–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brands M, Cahoon EB, Dörmann P (2020) Palmitvaccenic acid (Δ11-cis-hexadecenoic acid) is synthesized by an OLE1-like desaturase in the arbuscular mycorrhiza fungus Rhizophagus irregularis. Biochemistry 59:1163–1172

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Chen W-M, Cai C-Y, Sheu S-Y (2020) Sandaracinomonas limnophila gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from a freshwater mesocosm. Int J Syst Evol Microbiol 70:2178–2185

    Article  CAS  PubMed  Google Scholar 

  • Cooper J, Anderson J, Campbell C (2002) How resilient are microbial communities to temperature changes during composting? In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, New York, pp 3–17

    Chapter  Google Scholar 

  • Cruz-Paredes C, Wallander H, Kjøller R, Rousk J (2017) Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biol Biochem 112:153–164

    Article  CAS  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuck GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drijber RA, Jeske ES (2019) Polarity of chloroform eluent critical to quantification of arbuscular mycorrhizal biomass in soil using the neutral lipid fatty acid biomarker C16:1cis11. Soil Biol Biochem 138:107582

    Article  CAS  Google Scholar 

  • Elfstrand S, Lagerlöf J, Hedlund K, Mårtensson A (2008) Carbon routes from decomposing plant residues and living roots into soil food webs assessed with 13C labelling. Soil Biol Biochem 40:2530–2539

    Article  CAS  Google Scholar 

  • Faust S, Heinze S, Ngosong C, Sradnick A, Oltmanns M, Raupp J, Geisseler D, Joergensen RG (2017) Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization. Appl Soil Ecol 114:82–89

    Article  Google Scholar 

  • Fierer N, Wood SA, Bueno de Mesquita CP (2021) How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem 153:108111

    Article  CAS  Google Scholar 

  • Findlay R, Dobbs F (1993) Quantitative description of microbial communities using lipid analysis. In: Kemp P, Sherr B, Sherr E, Cole J (eds) Handbook of methods in aquatic microbial ecology. Lewis Publisher, Boca Raton, FL, pp 271–284

    Google Scholar 

  • Findlay R, Trexler M, Guckert J, White D (1990) Laboratory study of disturbance in marine sediments: response of a microbial community. Mar Ecol Prog Ser 62:121–133

    Article  Google Scholar 

  • Forczek ST, Bukovská P, Püschel D, Janoušková M, Blažková A, Jansa J (2022) Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environ Exp Bot 199:104897

    Article  CAS  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  Google Scholar 

  • Fu W, Chen B, Rillig MC, Jansa J, Ma W, Xu C, Luo W, Wu H, Hao Z, Wu H, Zhao A, Yu Q, Han X (2022) Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. New Phytol 234:2003–2017

    Article  PubMed  Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gryndler M, Šmilauer P, Püschel D, Bukovská P, Hršelová H, Hujslová M, Gryndlerová H, Konvalinková T, Jansa J (2018) Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28:435–450

    Article  PubMed  Google Scholar 

  • Hammer EC, Nasr H, Wallander H (2011) Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biol Biochem 43:2332–2337

    Article  CAS  Google Scholar 

  • Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem 34:1299–1307

    Article  CAS  Google Scholar 

  • Herzberger AJ, Duncan DS, Jackson RD (2014) Bouncing back: plant-associated soil microbes respond rapidly to prairie establishment. PLoS ONE 9:e115775

    Article  PubMed  PubMed Central  Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2006) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    Article  PubMed  Google Scholar 

  • Hoysted GA, Jacob AS, Kowal J, Giesemann P, Bidartondo MI, Duckett JG, Gebauer G, Rimington WR, Schornack S, Pressel S, Field KJ (2019) Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants. Plant Physiol 181:565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam T, Larsen Ø, and Birkeland N.K. (2020) A novel cold-adapted Methylovulum species, with a high C16: 1ω5c content, isolated from an arctic thermal spring in Spitsbergen. Microbes Environ 35(3), p.ME20044

  • Joergensen R, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Joergensen RG (2022) Phospholipid fatty acids in soil—drawbacks and future prospects. Biol Fertil Soils 58:1–6

    Article  CAS  Google Scholar 

  • Joung Y, Seo M, Kang H, Kim H, Ahn T-s, Cho J-C, Joh K (2015) Emticicia aquatica sp. nov., a species of the family Cytophagaceae isolated from fresh water. Int J Syst Evol Microbiol 65:4358–4362

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuck GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Koide RT (2008) Effect of soil moisture and temperature during fallow on survival of contrasting isolates of arbuscular mycorrhizal fungi. Botany 86:1117–1124

    Article  CAS  Google Scholar 

  • Lekberg Y, Rosendahl S, Michelsen A, Olsson PA (2013) Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis. Plant Soil 368:547–555

    Article  CAS  Google Scholar 

  • Lekberg Y, Vasar M, Bullington LS, Sepp S-K, Antunes PM, Bunn R, Larkin BG, Öpik M (2018) More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol 220:971–976

    Article  PubMed  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:1–17

    Article  Google Scholar 

  • Livermore BP, Johnson RC, Jenkin HM (1969) Isolation of an unusual positional isomer of hexadecenoic acid from a parasitic leptospire. Lipids 4:166–167

    Article  CAS  PubMed  Google Scholar 

  • Matthäus B (2012) The database Seed Oil Fatty Acids (SOFA) is back on the Internet! Eur J Lipid Sci Technol 114:701–702

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Kantola R, Kitunen V (1994) Combining sterol and fatty acid profiles for the characterization of fungi. Mycol Res 98:593–603

    Article  Google Scholar 

  • Ngosong C, Gabriel E, Ruess L (2012) Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J Lipids 2012:1–8

    Article  Google Scholar 

  • Nichols P, Stulp BK, Jones JG, White DC (1986) Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Arch Microbiol 146:1–6

    Article  CAS  Google Scholar 

  • Ohlrogge J, Thrower N, Mhaske V, Stymne S, Baxter M, Yang W, Liu J, Shaw K, Shorrosh B, Zhang M, Wilkerson C, Matthäus B (2018) PlantFAdb: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. Plant J 96:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Olsson P, Thingstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • Olsson P (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I, Söderström B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28:463–470

    Article  CAS  Google Scholar 

  • Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264–1270

    Article  Google Scholar 

  • Olsson PA, Lekberg Y (2022) A critical review of the use of lipid signature molecules for the quantification of arbuscular mycorrhiza fungi. Soil Biol Biochem 166:108574

    Article  CAS  Google Scholar 

  • Regnell O, Tunlid A, Ewald G, Sangfors O (1996) Methyl mercury production in freshwater microcosms affected by dissolved oxygen levels: role of cobalamin and microbial community composition. Can J Fish Aquat Sci 53:1535–1545

    CAS  Google Scholar 

  • Salvioli A, Chiapello M, Fontaine J, Hadj-Sahraoui AL, Grandmougin-Ferjani A, Lanfranco L, Bonfante P (2010) Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus. Environ Microbiol 12:2083–2095

    CAS  PubMed  Google Scholar 

  • Sawers RJH, Svane SF, Quan C, Grønlund M, Wozniak B, Gebrselassie MN, González-Muñoz E, Chávez Montes RA, Baxter I, Goudet J, Jakobsen I, Paszkowski U (2017) Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214:632–643

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Suzuki K, Takahashi K, Harada N (2020) Evaluation of primer pairs for studying arbuscular mycorrhizal fungal community compositions using a MiSeq platform. Biol Fertil Soils 56:853–858

    Article  Google Scholar 

  • Tanaka S, Hashimoto K, Kobayashi Y, Yano K, Maeda T, Kameoka H, Ezawa T, Saito K, Akiyama K, Kawaguchi M (2022) Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Commun Biol 5:1–9

    Article  Google Scholar 

  • Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232

    Article  CAS  PubMed  Google Scholar 

  • Toth R, Miller RM, Jarstfer AG, Alexander T, Bennett EL (1991) The calculation of intraradical fungal biomass from percent colonization in vesicular-arbuscular mycorrhizae. Mycologia 83:553–558

    Article  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Measure du taux de mycorrhization VA d’un systeme radiculaire. Recherche de methode d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Tunlid A, White DC (1990) Use of lipid biomarkers in environmental samples. Analytical Microbiology Methods. Springer, Boston, pp 259–274

    Chapter  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag JM (eds) Soil Biochemistry, vol 7. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • van Aarle IM, Olsson PA (2003) Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl Environ Microbiol 69:6762–6767

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Aarle IM, Olsson PA, Söderström B (2001) Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluorogenic substrate. Mycologia 93:17–24

    Article  Google Scholar 

  • Ven A, Verbruggen E, Verlinden MS, Olsson PA, Wallander H, Vicca S (2020) Mesh bags underestimated arbuscular mycorrhizal abundance but captured fertilization effects in a mesocosm experiment. Plant Soil 446:563–575

    Article  CAS  Google Scholar 

  • Vestberg M, Palojärvi A, Pitkänen T, Kaipainen S, Puolakka E, Keskitalo M (2012) Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy. Agric Food Sci 21:12–27

    Article  CAS  Google Scholar 

  • Vickery JR (1971) The fatty acid composition of the seed oils of proteaceae: a chemotaxonomic study. Phytochemistry 10:123–130

    Article  CAS  Google Scholar 

  • Voříšková A, Jansa J, Püschel D, Krüger M, Cajthaml T, Vosátka M, Janoušková M (2017) Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza 27:577–585

    Article  PubMed  Google Scholar 

  • Walker RW (1969) Cis-11-hexadecenoic acid from Cytophaga hutchinsonii lipids. Lipids 4:15–18

    Article  CAS  PubMed  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M (2015) Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot 66:4061–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welc M, Bünemann EK, Fließbach A, Frossard E, Jansa J (2012) Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling. Soil Biol Biochem 49:184–192

    Article  CAS  Google Scholar 

  • Wewer V, Brands M, Dörmann P (2014) Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J 79:398–412

    Article  CAS  PubMed  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294

    Article  CAS  PubMed  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylva Lekberg.

Ethics declarations

Conflict of interest

The authors declare that no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekberg, Y., Bååth, E., Frostegård, Å. et al. Fatty acid 16:1ω5 as a proxy for arbuscular mycorrhizal fungal biomass: current challenges and ways forward. Biol Fertil Soils 58, 835–842 (2022). https://doi.org/10.1007/s00374-022-01670-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-022-01670-9

Keywords

Navigation