Skip to main content
Log in

Identification of Rhodococcus erythropolis Promoters Controlled by Alternative Sigma Factors Using In Vivo and In Vitro Systems and Heterologous RNA Polymerase

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Rhodococcus erythropolis CCM2595 is a bacterial strain, which has been studied for its capability to degrade phenol and other toxic aromatic compounds. Its cell wall contains mycolic acids, which are also an attribute of other bacteria of the Mycolata group, such as Corynebacterium and Mycobacterium species. We suppose that many genes upregulated by phenol stress in R. erythropolis are controlled by the alternative sigma factors of RNA polymerase, which are active in response to the cell envelope or oxidative stress. We developed in vitro and in vivo assays to examine the connection between the stress sigma factors and genes activated by various extreme conditions, e.g., heat, cell surface, and oxidative stress. These assays are based on the procedures of such tests carried out in the related species, Corynebacterium glutamicum. We showed that the R. erythropolis CCM2595 genes frmB1 and frmB2, which encode S-formylglutathione hydrolases (named corynomycolyl transferases in C. glutamicum), are controlled by SigD, just like the homologous genes cmt1 and cmt2 in C. glutamicum. The new protocol of the in vivo and in vitro assays will enable us to classify R. erythropolis promoters according to their connection to sigma factors and to assign the genes to the corresponding sigma regulons. The complex stress responses, such as that induced by phenol, could, thus, be analyzed with respect to the gene regulation by sigma factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martínková L, Uhnákova B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177. https://doi.org/10.1016/j.envint.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  2. Donini E, Firrincieli A, Cappelletti M (2021) Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol 66:701–713. https://doi.org/10.1007/s12223-021-00892-y

    Article  CAS  Google Scholar 

  3. Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D (2020) Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 104:8567–8594. https://doi.org/10.1007/s00253-020-10861-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, He Y, Zhang L, Xu Z, Ben H, Gaffrey MJ, Yang Y, Yang S, Yuan JS, Qian WJ, Yang B (2019) Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnol Biofuels 12:60–75. https://doi.org/10.1186/s13068-019-1395-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang M, Chen J, Yu H, Shen Z (2018) Improving stress tolerance and cell integrity of Rhodococcus ruber by overexpressing small-shock-protein Hsp16 of Rhodococcus. J Ind Microbiol Biotechnol 45:929–938. https://doi.org/10.1007/s10295-018-2066-9

    Article  CAS  PubMed  Google Scholar 

  6. Bukliarevich HA, Charniauskaya MI, Akhremchuk AE, Valentovich LN, Titok MA (2019) Effect of the structural and regulatory heat shock proteins on hydrocarbon degradation by Rhodococcus pyridinivorans 5Ap. Microbiology 88:573–579. https://doi.org/10.1134/s0026261719050023

    Article  CAS  Google Scholar 

  7. Kobayashi M, Yanaka N, Nagasawa T, Yamada H (1992) Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry 31:9000–9007. https://doi.org/10.1021/bi00152a042

    Article  CAS  PubMed  Google Scholar 

  8. Kuyukina MS, Krivoruchko A, Ivshina IB (2018) Hydrocarbon- and metal-polluted soil bioremediation: progress and challenges. Microbiol Aust 39:133–136. https://doi.org/10.1071/MA18041

    Article  Google Scholar 

  9. Zheng YT, Toyofuku M, Nomura N, Shigeto S (2013) Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74. Anal Chem 85:7295–7301. https://doi.org/10.1021/ac401188f

    Article  CAS  PubMed  Google Scholar 

  10. Pátek M, Grulich M, Nešvera J (2021) Stress response in Rhodococcus strains. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2021.107698

    Article  PubMed  Google Scholar 

  11. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466. https://doi.org/10.1146/annurev.micro.57.030502.090913

    Article  CAS  PubMed  Google Scholar 

  12. Pátek M, Dostálová H, Nešvera J (2020) Sigma factors of RNA polymerase in Corynebacterium glutamicum. In: Corynebacterium glutamicum, biology and biotechnology. pp 89–112. https://doi.org/10.1007/978-3-030-39267-3_4

  13. Strnad H, Pátek M, Fousek J, Szokol J, Ulbrich P, Nešvera J, Pačes V, Vlček Č (2014) Genome sequence of Rhodococcus erythropolis strain CCM2595, a phenol derivatives degrading bacterium. Genome Announc. https://doi.org/10.1128/genomeA.00208-14

    Article  PubMed  PubMed Central  Google Scholar 

  14. McLeod MP, Warren RL, Hsiao WWK, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587. https://doi.org/10.1073/pnas.0607048103

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ekpanyaskun P (2006) Transcriptomic analysis of Rhodococcus sp. RHA1 responses to heat shock and osmotic stress. Master Thesis, University of British Columbia, Vancouver

  16. Toyoda K, Inui M (2016) The extracytoplasmic function σ factor σC regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 100:486–509. https://doi.org/10.1111/mmi.13330

    Article  CAS  PubMed  Google Scholar 

  17. Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF (2017) Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol 17:158–168. https://doi.org/10.1186/s12866-017-1067-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyoda K, Inui M (2018) Extracytoplasmic function sigma factor σD confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mol Microbiol 107:312–329. https://doi.org/10.1111/mmi.13883

    Article  CAS  PubMed  Google Scholar 

  19. Busche T, Šilar R, Pičmanová M, Pátek M, Kalinowski J (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13:445. https://doi.org/10.1186/1471-2164-13-445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972. https://doi.org/10.1128/JB.00112-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holátko J, Šilar R, Rabatinová A, Šanderová H, Halada P, Nešvera J, Krásny L, Pátek M (2012) Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes. Appl Microbiol Biotechnol 96:521–529. https://doi.org/10.1007/s00253-012-4336-1

    Article  CAS  PubMed  Google Scholar 

  22. Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M (2017) Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express 7:133–146. https://doi.org/10.1186/s13568-017-0436-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239. https://doi.org/10.1007/s00284-007-0106-1

    Article  CAS  PubMed  Google Scholar 

  24. Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M (2019) Overlap of promoter recognition specificity of stress response sigma factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Front Microbiol 9:3287–3304. https://doi.org/10.3389/fmicb.2018.03287

    Article  PubMed  PubMed Central  Google Scholar 

  25. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  26. Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299. https://doi.org/10.1016/S0168-1656(03)00148-2

    Article  CAS  PubMed  Google Scholar 

  27. Ross W, Gourse RL (2009) Analysis of RNA polymerase-promoter complex formation. Methods 47:13–24. https://doi.org/10.1016/j.ymeth.2008.10.018

    Article  CAS  PubMed  Google Scholar 

  28. Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 2:242–245. https://doi.org/10.1093/nar/gky354

    Article  CAS  Google Scholar 

  29. Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ (2015) Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Factories 14:1–14. https://doi.org/10.1186/s12934-015-0254-0

    Article  CAS  Google Scholar 

  30. Gibson DG, Young L, Chuang RY, Venter JC, Hutchinson CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  31. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545. https://doi.org/10.1007/s002530051557

    Article  PubMed  Google Scholar 

  32. Qi Y, Hulett FM (1998) PhoP~P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP~P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197. https://doi.org/10.1046/j.1365-2958.1998.00882.x

    Article  CAS  PubMed  Google Scholar 

  33. Homerova D, Surdova K, Mikusova K, Kormanec J (2007) Identification of promoters recognized by RNA polymerase containing Mycobacterium tuberculosis stress-response sigma factor σF. Arch Microbiol 187:185–197. https://doi.org/10.1007/s00203-006-0185-6

    Article  CAS  PubMed  Google Scholar 

  34. Homerova D, Bischoff M, Dumolin A, Kormanec J (2004) Optimization of a two-plasmid system for the identification of promoters recognized by RNA polymerase containing Staphylococcus aureus alternative sigma factor σB. FEMS Microbiol Lett 232:173–179. https://doi.org/10.1016/S0378-1097(04)00063-1

    Article  CAS  PubMed  Google Scholar 

  35. Calamita H, Ko C, Tyagi S, Yoshimatsu T, Morrison NE, Bishai WR (2005) The Mycobacterium tuberculosis SigD sigma factor controls the expression of ribosome-associated gene products in stationary phase and is required for full virulence. Cell Microbiol 7:233–244. https://doi.org/10.1111/j.1462-5822.2004.00454.x

    Article  CAS  PubMed  Google Scholar 

  36. Raman S, Hazra R, Dascher CC, Husson RN (2004) Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol 186:6605–6616. https://doi.org/10.1128/JB.186.19.6605-6616.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albersmeier A, Pfeifer-Sancar K, Rückert C, Kalinowski J (2017) Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. J Biotechnol 257:99–109. https://doi.org/10.1016/j.jbiotec.2017.04.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Jan Nešvera and Jiří Matějů (Institute of Microbiology, Prague) for critical reading of the manuscript and helpful comments.

Funding

This work was supported by Grant 18-13254S from the Czech Science Foundation, Grants from Charles University (Projects GAUK 452120 and 338321), and Institutional Research Project RVO61388971 from the Institute of Microbiology of the CAS.

Author information

Authors and Affiliations

Authors

Contributions

HD and MP conceived the study and wrote the initial draft. HD performed in vitro transcription, JB performed cloning and in vivo assays, RR performed the CRISPR-Cas9 constructions, VŠ carried out mutagenesis and database searches, and MG isolated and analyzed the proteins. All the authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Miroslav Pátek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 kb)

Supplementary file2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenstein, J., Rädisch, R., Štěpánek, V. et al. Identification of Rhodococcus erythropolis Promoters Controlled by Alternative Sigma Factors Using In Vivo and In Vitro Systems and Heterologous RNA Polymerase. Curr Microbiol 79, 55 (2022). https://doi.org/10.1007/s00284-021-02747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02747-8

Navigation