Skip to main content
Log in

Gas-aggregated Ag nanoparticles for detection of small molecules using LDI MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Several reports demonstrate that silver nanomaterials can serve as surface-assisted laser desorption ionization mass spectrometry (SALDI MS) substrates for low molecular weight analytes. Substrate with tailored silver nanostructures, primarily representing the upmost layer of the bulk, i.e., occurring beneath the analyzed medium, limits the use of silver only for desorption enhancement; the charge transfer progresses through atoms from the absorbing analyte or an additional matrix (resulting in the formation of analyte/hydrogen, sodium, or potassium adducts in the most cases). In the presented approach, we utilize a homogeneous layer of silver nanoparticles, prepared under low-pressure conditions, deposited onto a dried analyte. We demonstrate that the nanoparticle layer can fully replace a matrix typically used for the detection of small molecules by laser desorption/ionization mass spectrometry-based technique (LDI MS) and can be applied to the already prepared samples. Various chemical species were detected as [M + Ag]+ adduct ions employing the proposed technique. The normalized signal of the analyte/silver adduct can be utilized to characterize a quantitative presence of analytes on the surface similar to signal-to-noise value, here demonstrated by the detection of trimethoprim molecule. This study also includes a detailed description of additional features one needs to take into account, such as a formation of [Mx + Agy]+ adducts, presence of silver ions (can be used for m/z calibration), analyte fragmentation, and influence of deposited nanoparticles quantity on the signal intensity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem. 2018;410(17):4015–38.

    CAS  PubMed  Google Scholar 

  2. Aichler M, Walch A. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Investig. 2015;95:422–31.

    CAS  PubMed  Google Scholar 

  3. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 2002;17:337–66.

    Google Scholar 

  4. Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem. 2002;373:571–86.

    CAS  PubMed  Google Scholar 

  5. Lu M, Yang X, Yang Y, Qin P, Wu X, Cai Z. Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials. 2017;7:87 Available from: http://www.mdpi.com/2079-4991/7/4/87.

    PubMed Central  Google Scholar 

  6. Cheng YH, Zhang Y, Chau SL, Lai SKM, Tang HW, Ng KM. Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys. ACS Appl Mater Interfaces. 2016;8:29668–75.

    CAS  PubMed  Google Scholar 

  7. Yonezawa T, Kawakashi H, Tarui A, Watanabe T, Arakawa R, Shimada T, et al. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal Sci. 2009;25:339–46.

    CAS  PubMed  Google Scholar 

  8. Gurav DD, Jia Y, Ye J, Qian K. Design of plasmonic nanomaterials for diagnostic spectrometry. Nanoscale Adv. 2019;1:459–69.

    Google Scholar 

  9. Guinan T, Ronci M, Vasani R, Kobus H, Voelcker NH. Comparison of the performance of different silicon-based SALDI substrates for illicit drug detection. Talanta. 2015;132:494–502.

    CAS  PubMed  Google Scholar 

  10. Nayak R, Knapp DR. Matrix-free LDI mass spectrometry platform using patterned nanostructured gold thin film. Anal Chem. 2010;82:7772–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolářová L, Kučera L, Vaňhara P, Hampl A, Havel J. Use of flower-like gold nanoparticles in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2015;29:1585–95.

    PubMed  Google Scholar 

  12. Kawasaki H, Yonezawa T, Watanabe T, Arakawa R. Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. J Phys Chem C. 2007;111:16278–83.

    CAS  Google Scholar 

  13. Coffinier Y, Boukherroub R, Szunerits S. Carbon-based nanostructures for matrix-free mass spectrometry. In: Yang N., Jiang X., Pang DW. (eds). Carbon Nanoparticles and Nanostructures. Carbon Nanostruct; 2016. p. 331–56. https://doi.org/10.1007/978-3-319-28782-9_10

    Google Scholar 

  14. Ohta T, Ito H, Ishikawa K, Kondo H, Hiramatsu M, Hori M. Atmospheric pressure plasma-treated carbon nanowalls’ surface-assisted laser desorption/ionization time-of-flight mass spectrometry (CNW-SALDI-MS). C. 2019;5:40.

    Google Scholar 

  15. Hong M, Xu L, Wang F, Geng Z, Li H, Wang H, et al. A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film. Analyst. 2016;141:2712–26.

    CAS  PubMed  Google Scholar 

  16. Abdelhamid HN. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta. 2018;185:200.

    Google Scholar 

  17. Chiang CK, Chiang NC, Lin ZH, Lan GY, Lin YW, Chang HT. Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins. J Am Soc Mass Spectrom. 2010;21:1204–7. Elsevier Inc.; Available from:. https://doi.org/10.1016/j.jasms.2010.02.028.

    Article  CAS  PubMed  Google Scholar 

  18. Rabilloud T, Vuillard L, Gilly C, Lawrence J. Silver-staining of proteins in polyacrylamide gels : a general overview. To cite this version : Cell Mol Biol Omi Int. 2009;1–33. Available from: http://arxiv.org/abs/0911.4458.

  19. Shoeib T, Siu KWM, Hopkinson AC. Silver ion binding energies of amino acids: use of theory to assess the validity of experimental silver ion basicities obtained from the kinetic method. J Phys Chem A. 2002;106:6121–8.

    CAS  Google Scholar 

  20. Yang E, Fournelle F, Chaurand P. Silver spray deposition for AgLDI imaging MS of cholesterol and other olefins on thin tissue sections. J Mass Spectrom. 2019. https://doi.org/10.1002/jms.4428.

  21. Yan H, Xu N, Huang WY, Han HM, Xiao SJ. Electroless plating of silver nanoparticles on porous silicon for laser desorption/ionization mass spectrometry. Int J Mass Spectrom. 2009;281:1–7.

    CAS  Google Scholar 

  22. Guinan TM, Gustafsson OJR, McPhee G, Kobus H, Voelcker NH. Silver coating for high-mass-accuracy imaging mass spectrometry of fingerprints on nanostructured silicon. Anal Chem. 2015;87:11195–202.

    CAS  PubMed  Google Scholar 

  23. Nizioł J, Rode W, Zieliński Z, Ruman T. Matrix-free laser desorption-ionization with silver nanoparticle-enhanced steel targets. Int J Mass Spectrom. 2013;335:22–32.

    Google Scholar 

  24. Iravani S, Korbekandi H, Mirmohammadi S V., Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014. p. 385–406.

  25. Chiu TC, Chang LC, Chiang CK, Chang HT. Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. J Am Soc Mass Spectrom. 2008;19:1343–6.

    CAS  PubMed  Google Scholar 

  26. Castellana ET, Sherrod SD, Russell DH. Nanoparticles for selective laser desorption/ionization in mass spectrometry. J Lab Autom. 2008;13:330–4.

    CAS  Google Scholar 

  27. Walton BL, Verbeck GF. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints. Anal Chem. 2014;86:8114–20.

    CAS  PubMed  Google Scholar 

  28. Jackson SN, Baldwin K, Muller L, Womack VM, Schultz JA, Balaban C, et al. Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Anal Bioanal Chem. 2014;406:1377–86.

    CAS  PubMed  Google Scholar 

  29. Muller L, Kailas A, Jackson SN, Roux A, Barbacci DC, Schultz JA, et al. Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int. 2015;88:186–92. Nature Publishing Group; Available from:. https://doi.org/10.1038/ki.2015.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayasaka T, Goto-Inoue N, Zaima N, Shrivas K, Kashiwagi Y, Yamamoto M, et al. Imaging mass spectrometry with silver nanoparticles reveals the distribution of fatty acids in mouse retinal sections. J Am Soc Mass Spectrom. 2010;21:1446–54. Elsevier Inc.; Available from:. https://doi.org/10.1016/j.jasms.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  31. Lai EPC, Owega S, Kulczycki R. Time-of-flight mass spectrometry of bioorganic molecules by laser ablation of silver thin film substrates and particles. J Mass Spectrom. 1998;33:554–64.

    Google Scholar 

  32. Ekpe SD, Jimenez FJ, Field DJ, Davis MJ, Dew SK. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system. J Vac Sci Technol A Vacuum, Surf Film. 2009;27:1275–80.

    CAS  Google Scholar 

  33. Lundin D, Stahl M, Kersten H, Helmersson U. Energy flux measurements in high power impulse magnetron sputtering. J Phys D Appl Phys. 2009;42.

    Google Scholar 

  34. Gauter S, Haase F, Solař P, Kylián O, Kúš P, Choukourov A, et al. Calorimetric investigations in a gas aggregation source. J Appl Phys. 2018;124.

    Google Scholar 

  35. Prysiazhnyi V, Kratochvil J, Dycka F, Stranak V, Ksirova P, Hubicka Z. Silver nanoparticles for solvent-free detection of small molecules and mass-to-charge calibration of laser desorption/ionization mass spectrometry. J Vac Sci Technol B. 2019;37:12906.

    Google Scholar 

  36. Wise SA, Sander LC, Schantz MM. Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs) — a historical perspective on the 16 U.S. EPA priority pollutant PAHs. Polycycl Aromat Compd. 2015;35:187–247.

    CAS  Google Scholar 

  37. Stranak V, Bogdanowicz R, Sezemsky P, Wulff H, Kruth A, Smietana M, et al. Towards high quality ITO coatings: the impact of nitrogen admixture in HiPIMS discharges. Surf Coatings Technol. 2018;335:126–33.

    CAS  Google Scholar 

  38. Kratochvíl J, Štěrba J, Lieskovská J, Langhansová H, Kuzminova A, Khalakhan I, et al. Antibacterial effect of Cu/C:F nanocomposites deposited on PEEK substrates. Mater Lett. 2018;230:96–9.

    Google Scholar 

  39. Kratochvíl J, Kuzminova A, Solař P, Hanuš J, Kylián O, Biederman H. Wetting and drying on gradient-nanostructured C:F surfaces synthesized using a gas aggregation source of nanoparticles combined with magnetron sputtering of polytetrafluoroethylene. Vacuum. 2019;166:50–6.

    Google Scholar 

  40. Haberland H, Karrais M, Mall M. A new type of cluster and cluster ion source. Zeitschrift für Phys D Atoms Mol Clust. 1991;20:413–5.

    CAS  Google Scholar 

  41. Baker SH, Thornton SC, Keen AM, Preston TI, Norris C, Edmonds KW, et al. The construction of a gas aggregation source for the preparation of mass-selected ultrasmall metal particles. Rev Sci Instrum. 1997;68:1853–7.

    CAS  Google Scholar 

  42. Kratochvíl J, Kuzminova A, Kylián O, Biederman H. Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf Coatings Technol. 2015;275:296–302.

    Google Scholar 

  43. Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett. 2009;94.

    Google Scholar 

  44. Li B, Yang C, Li H, Ji B, Lin J, Tomie T. Thermionic emission in gold nanoparticles under femtosecond laser irradiation observed with photoemission electron microscopy. AIP Adv. 2019;9:025112.

    Google Scholar 

  45. Zinovev A, Moore JF, Baryshev SV, Schultz JA, Lewis E, Brinson B, et al. Laser ablation of sub-10 nm silver nanoparticles. J Phys Chem C. 2017;121:9552–9.

    CAS  Google Scholar 

  46. Blaske F, Stork L, Sperling M, Karst U. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione. J Nanopart Res. 2013;15:1928.

    Google Scholar 

  47. Picca RA, Calvano CD, Cioffi N, Palmisano F. Mechanisms of nanophase-induced desorption in LDI-MS. A Short Review. Nanomaterials. 2017;7:75–94.

    PubMed Central  Google Scholar 

  48. Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal Chem. 1995;67:1034–41.

    CAS  Google Scholar 

  49. Hung KC, Ding H, Baochuan G. Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins. Anal Chem. 1999;71:518–21.

    CAS  PubMed  Google Scholar 

  50. Axelsson J, Hoberg AM, Waterson C, Myatt P, Shield GL, Varney J, et al. Improved reproducibility and increased signal intensity in matrix-assisted laser desorption/ionization as a result of electrospray sample preparation. Rapid Commun Mass Spectrom. 1997;11:209–13.

    CAS  Google Scholar 

  51. Larson RG. Re-shaping the coffee ring. Angew Chemie - Int Ed. 2012;51:2546–8.

    CAS  Google Scholar 

  52. Müller M, Schiller J, Petković M, Oehrl W, Heinze R, Wetzker R, et al. Limits for the detection of (poly-)phosphoinositides by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). Chem Phys Lipids. 2001;110:151–64.

    PubMed  Google Scholar 

  53. Nimptsch A, Schibur S, Schnabelrauch M, Fuchs B, Huster D, Schiller J. Characterization of the quantitative relationship between signal-to-noise (S/N) ratio and sample amount on-target by MALDI-TOF MS: determination of chondroitin sulfate subsequent to enzymatic digestion. Anal Chim Acta. 2009;635:175–82.

    CAS  PubMed  Google Scholar 

  54. Christie WW. Isolation, separation, identification and lipidomic analysis [internet]. UK: Oily Press. Bridg; 2003. Available from: http://www.elsevier.com/books/lipid-analysis/christie/978-0-9552512-4-5

    Google Scholar 

  55. Kishikawa N, Wada M, Kuroda N, Akiyama S, Nakashima K. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci. 2003;789:257–64.

    CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Czech Science Foundation Agency through the project GACR 19-20168S and the Technology Agency of the Czech Republic (TACR TG03010027, sub-project 02-13). Access to instruments and other facilities was supported by the Czech research infrastructure for systems biology C4SYS (project no. LM2015055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadym Prysiazhnyi.

Ethics declarations

This study did not involve any human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prysiazhnyi, V., Dycka, F., Kratochvil, J. et al. Gas-aggregated Ag nanoparticles for detection of small molecules using LDI MS. Anal Bioanal Chem 412, 1037–1047 (2020). https://doi.org/10.1007/s00216-019-02329-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02329-5

Keywords

Navigation