Skip to main content
Log in

Nonlinear and Linearized Models in Thermoviscoelasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a quasistatic nonlinear model in thermoviscoelasticity at a finite-strain setting in the Kelvin–Voigt rheology, where both the elastic and viscous stress tensors comply with the principle of frame indifference under rotations. The force balance is formulated in the reference configuration by resorting to the concept of nonsimple materials, whereas the heat transfer equation is governed by the Fourier law in the deformed configurations. Weak solutions are obtained by means of a staggered in-time discretization where the deformation and the temperature are updated alternatingly. Our result refines a recent work by Mielke and Roubíček (Arch Ration Mech Anal 238:1–45, 2020) since our approximation does not require any regularization of the viscosity term. Afterwards, we focus on the case of deformations near the identity and small temperatures, and we show by a rigorous linearization procedure that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. The same property holds for time-discrete approximations and we provide a corresponding commutativity result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicandro, R., Dal Maso, G., Lazzaroni, G., Palombaro, M.: Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals. Arch. Ration. Mech. Anal. 230, 1–45, 2018

    Article  MathSciNet  MATH  Google Scholar 

  2. Antman, S.S.: Physically unacceptable viscous stresses. Z. Angew. Math. Phys. 49, 980–988, 1998

    Article  MathSciNet  MATH  Google Scholar 

  3. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York, 2004

  4. Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174, 1981

    Article  MathSciNet  MATH  Google Scholar 

  5. Batra, R.C.: Thermodynamics of non-simple elastic materials. J. Elast. 6, 451–456, 1976

    Article  ADS  MATH  Google Scholar 

  6. Blanchard, D., Guibé, O.: Existence of a solution for a nonlinear system in thermoviscoelasticity. Adv. Differ. Equ. 5, 1221–1252, 2000

    MathSciNet  MATH  Google Scholar 

  7. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford University Press, Oxford, 2002

  8. Braides, A., Solci, M., Vitali, E.: A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2, 551–567, 2007

    Article  MathSciNet  MATH  Google Scholar 

  9. Boccardo, L., Dall’aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258, 1997

    Article  MathSciNet  MATH  Google Scholar 

  10. Boccardo, L., Gallouët, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169, 1989

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonetti, E., Bonfanti, G.: Existence and uniqueness of the solution to a 3D thermoelastic system. Electron. J. Differ. Equ. 50, 1–15, 2003

    MATH  Google Scholar 

  12. Dal Maso, G.: An Introduction to\(\Gamma \)-Convergence. Birkhäuser, Boston, 1993

  13. Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as \(\Gamma \)-limit of finite elasticity. Set-valued Anal. 10, 165–183, 2002

    Article  MathSciNet  MATH  Google Scholar 

  14. Davoli, E., Friedrich, M.: Two-well linearization for solid–solid phase transitions. Preprint at arXiv:2005.03892v1, 2020

  15. Demoulini, S.: Weak solutions for a class of nonlinear systems of viscoelasticity. Arch. Ration. Mech. Anal. 155, 299–334, 2000

    Article  MathSciNet  MATH  Google Scholar 

  16. Feireisl, E., Málek J.: On the Navier–Stokes equations with temperature-dependent transport coefficients. Differ. Equ. Nonlinear Mech. 2006

  17. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations:\(L^p\)Spaces. Springer, Berlin, 2007

  18. Friedrich, M.: A derivation of linearized Griffith energies from nonlinear models. Arch. Ration. Mech. Anal. 225, 425–467, 2017

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedrich, M., Kružík, M.: On the passage from nonlinear to linearized viscoelasticity. SIAM J. Math. Anal. 50, 4426–4456, 2018

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedrich, M.: Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials. Math. Eng. 2, 75–100, 2020

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, 2010

  22. Healey, T.J., Krömer, S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM Control Optim. Cal. Var. 15, 863–871, 2009

    Article  MathSciNet  MATH  Google Scholar 

  23. Jesenko, M., Schmidt, B.: Geometric linearization of theories for incompressible elastic materials and applications. Math. Mod. Methods Appl. Sci. 31, 829–860, 2021

    Article  MathSciNet  MATH  Google Scholar 

  24. Krömer, S., Roubíček, T.: Quasistatic viscoelasticity with self-contact at large strains. J. Elast. 142, 433–445, 2020

    Article  MathSciNet  MATH  Google Scholar 

  25. Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids. Springer, Cham, 2019

  26. Lewicka, M., Mucha, P.B.: A local existence result for system of viscoelasticity with physical viscosity. Evol. Equ. Control Theory 2, 337–353, 2013

    Article  MathSciNet  MATH  Google Scholar 

  27. Mainini, E., Percivale, D.: Variational linearization of pure traction problems in incompressible elasticity. Zeit. Angew. Math. Phys. 71, 146, 2020

    Article  MathSciNet  MATH  Google Scholar 

  28. Mainini, E., Percivale, D.: Linearization of elasticity models for incompressible materials. Preprint at arXiv:2004.09286, 2020

  29. Maor, C., Mora, M.G.: Reference configurations versus optimal rotations: a derivation of linear elasticity from finite elasticity for all traction forces. J. Nonlinear Sci. 31, 62, 2021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mielke, A., Naumann, J.: On the existence of global-in-time weak solutions and scaling laws for Kolmogorov’s two-equation model of turbulence. Preprints: WIAS, Berlin, 2545 and arXiv:1801.02039, 2018

  31. Mielke, A., Ortner, C., Şengül, Y.: An approach to nonlinear viscoelasticity via metric gradient flows. SIAM J. Math. Anal. 46, 1317–1347, 2014

    Article  MathSciNet  MATH  Google Scholar 

  32. Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Methods Appl. Sci. 26, 2203–2236, 2016

    Article  MathSciNet  MATH  Google Scholar 

  33. Mielke, A., Roubíček, T.: Thermoviscoelasticity in Kelvin–Voigt rheology at large strains. Arch. Ration. Mech. Anal. 238, 1–45, 2020

    Article  MathSciNet  MATH  Google Scholar 

  34. Mielke, A., Stefanelli, U.: Linearized plasticity is the evolutionary \(\Gamma \)-limit of finite plasticity. J. Eur. Math. Soc. (JEMS) 15, 923–948, 2013

    Article  MathSciNet  MATH  Google Scholar 

  35. Podio-Guidugli, P.: Contact interactions, stress, and material symmetry for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276, 2002

    Article  MathSciNet  MATH  Google Scholar 

  36. Pompe, W.: Korn’s first inequality with variable coefficients and its generalization. Comment. Math. Univ. Carolinae 44, 57–70, 2003

    MathSciNet  MATH  Google Scholar 

  37. Roubíček, T.: Nonlinear heat equation with \(L^1\)-data. NoDEA Nonlinear Differ. Equ. Appl. 5(4), 517–527, 1998

    Article  MATH  Google Scholar 

  38. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, vol. 153. Springer, 2013

  39. Schmidt, B.: Linear \(\Gamma \)-limits of multiwell energies in nonlinear elasticity theory. Contin. Mech. Thermodyn. 20, 375–396, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Schmidt, B.: On the derivation of linear elasticity from atomistic models. Netw. Heterog. Media 4, 789–812, 2009

    Article  MathSciNet  MATH  Google Scholar 

  41. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414, 1962

    Article  MathSciNet  MATH  Google Scholar 

  42. Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112, 1964

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the DFG Project FR 4083/5-1 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 -390685587, Mathematics Münster: Dynamics–Geometry–Structure. The work was further supported by the DAAD Project 57600633, and by the Project DAAD-22-03. Martin Kružík acknowledges support by GAČR-FWF Project 21-06569K and by the Erwin Schrödinger International Institute for Mathematics and Physics during his stay in Vienna in 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kružík.

Additional information

Communicated by M. Ortiz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badal, R., Friedrich, M. & Kružík, M. Nonlinear and Linearized Models in Thermoviscoelasticity. Arch Rational Mech Anal 247, 5 (2023). https://doi.org/10.1007/s00205-022-01834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-022-01834-9

Navigation