Skip to main content

Advertisement

Log in

Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ultrasonic pulsating water jet for non-thermal and selective removal of acrylic bone cement is studied. Variation of acoustic chamber length is used for tuning of the ultrasonic system into the resonance regime to gain maximum power transmission. The study investigates the minimal technological conditions such as nozzle traverse speed and supply water pressure required to generate disintegration grooves in bone cement mantle. It also proposes the safe standoff distance range, which is essential for its potential application during the extraction of bone cement without compromising host bone. Palacos R+G bone cement was used for the experiments. Generated groove depths were measured using MicroProf FRT and analyzed using SPIP software. Depth values showed an increasing trend with an increase in acoustic chamber length, decrease in traverse speed, and increase in supply pressure values. From the entire experimental domain, a maximum depth of 615 μm was obtained at 22-mm chamber length, 0.5-mm/s traverse speed, 10-MPa pressure, and a standoff distance of 4 mm. Brittle fractured surface features like material chipping, micro-pits, cracks, and sheared material layers were observed in the SEM images. Disintegrated debris, diameter 21–37 μm, conceived from pit diameters can be used to design a suction unit. Real-time control of the disintegration process using accelerometer sensors was shown. The results support the idea of using pulsating water jet for bone cement removal in a single blind hole. Minimal technological parameters reduce reaction force of the hand tool, allowing bone cement removal without bone fracture or perforation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

β :

Solid–liquid contact angle [°]

ρ 1 :

Density of liquid [kg/m3]

ρ 2 :

Density of solid [kg/m3]

Δt :

Time period [s]

c 1 :

Acoustic velocity of liquid [m/s]

c 2 :

Acoustic velocity of solid [m/s]

d :

Nozzle diameter [mm]

D :

Hole diameter [mm]

f o :

Operating frequency [kHz]

f i :

Initial frequency [kHz]

h :

Disintegration depth [μm]

l c :

Acoustic chamber length [mm]

p :

Supply water pressure [MPa]

p i :

Compressive stress [MPa]

p s :

Stagnation pressure [MPa]

P :

Output power [W]

Q :

Theoretical volume flow rate [L/min]

r :

Radius of liquid mass [mm]

v :

Traverse speed [mm/s]

v w :

Liquid velocity [m/s]

z :

Standoff distance [mm]

CWJ:

Continuous water jet

PWJ:

Pulsating water jet

References

  1. Momber AW (2004) Synergetic effects of secondary liquid drop impact and solid particle impact during hydro-abrasive erosion of brittle materials. Wear 256:1190–1195

    Article  Google Scholar 

  2. Lu Y, Huang F, Liu X, Ao X (2015) On the failure pattern of sandstone impacted by high-velocity water jet. Int J Impact Eng 76:67–74

    Article  Google Scholar 

  3. Haller P de (1933) Untersuchungen über die durch Kavitation hervorgerufenen Korrosionen. Schweizerische Bauzeitung

  4. Bowden FP, Field JE (1964) The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc R Soc Lond A Math Phys Sci 282:331–352. https://doi.org/10.1098/rspa.1964.0236

    Article  Google Scholar 

  5. Hancox NL, Brunton JH (1966) The erosion of solids by the repeated impact of liquid drops. Philos Trans R Soc Lond A, Math Phys Sci 260:121–139. https://doi.org/10.1098/rsta.1966.0036

  6. Thomas GP, Brunton JH (1970) Drop impingement erosion of metals. Proc R Soc Lond A Math Phys Eng Sci 314:549–565. https://doi.org/10.1098/rspa.1970.0022

  7. Nebeker EB (1981) Development of large diameter percussive jets. In: Proceedings of the 1st US Water Jet Symposium, WJTA, St. Louis, USA

  8. Gensheng L, Zhonghou S, Changshan Z, Debin Z, Hongbing C (2005) Investigation and application of self-resonating cavitating water jet in petroleum engineering. Pet Sci Technol 23:1–15

    Article  Google Scholar 

  9. Vijay MM (1992) Ultrasonically generated cavitating or interrupted jet

  10. Wang P, Li Z, Ni H, Liu Y, Dou P (2020) Experimental study of rock breakage of an interrupted pulsed waterjet. Energy Rep 6:713–720

    Article  Google Scholar 

  11. Lehocka D, Klich J, Foldyna J, Hloch S, Krolczyk JB, Carach J, Krolczyk GM (2016) Copper alloys disintegration using pulsating water jet. Measurement 82:375–383

    Article  Google Scholar 

  12. Zeleňák M, Říha Z, Jandačka P (2020) Visualization and velocity analysis of a high-speed modulated water jet generated by a hydrodynamic nozzle. Measurement:107753

  13. Foldyna J, Svehla B (2011) US . Patent. 2:1–5

  14. Zhou Q, Li N, Chen X, Xu T, Hui S, Zhang D (2009) Analysis of water drop erosion on turbine blades based on a nonlinear liquid-solid impact model. Int J Impact Eng 36:1156–1171. https://doi.org/10.1016/j.ijimpeng.2009.02.007

  15. Hloch S, Adamčík P, Nag A, Srivastava M, Čuha D, Müller M, Hromasová M, Klich J (2019) Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear 428–429:178–192. https://doi.org/10.1016/j.wear.2019.03.015

    Article  Google Scholar 

  16. Tripathi R, Hloch S, Chattopadhyaya S, Klichová D, Ščučka J, Das AK (2020) Application of the pulsating and continous water jet for granite erosion. Int J Rock Mech Min Sci 126:104209

    Article  Google Scholar 

  17. Foldyna J, Sitek L, Ščučka J, Martinec P, Valíček J, Páleníková K (2009) Effects of pulsating water jet impact on aluminium surface. J Mater Process Technol 209:6174–6180

  18. Pochylý F, Habán V, Foldyna J, Sitek L (2007) 3D problem of pressure wave propagation in the tube with inconstant cross section. In: Proceedings of the International Congress on Ultrasonics, Vienna

  19. Hloch S, Srivastava M, Nag A et al (2020) Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear 452–453:203278

    Article  Google Scholar 

  20. Schmolke S, Pude F, Kirsch L, Honl M, Schwieger K, Krömer S (2004) Wärmeentwicklung bei der Wasser-Abrasivstrahl-Osteotomie/temperature measurements during abrasive water jet osteotomy. Biomed Tech Eng 49:18–21

  21. Honl M, Rentzsch R, Müller G et al (2000) The use of water-jetting technology in prostheses revision surgery—first results of parameter studies on bone and bone cement. J Biomed Mater Res A 53:781–790

    Article  Google Scholar 

  22. Honl M, Dierk O, Küster JR, Müller G, Müller V, Hille E, Morlock M (2001) Die Wasserstrahldiskotomie im mikroinvasiven Zugang-In-vitro-Testung und erste klinische Aspekte eines neuen Verfahrens. Z Orthop Ihre Grenzgeb 139:45–51

    Article  Google Scholar 

  23. Dennis DA, Dingman CA, Meglan DA et al (1987) Femoral cement removal in revision total hip arthroplasty. A biomechanical analysis. Clin Orthop Relat Res:142–147

  24. Schwaller CA, Elke R (2001) Cement removal with ultrasound in revision or total hip prosthesis. Orthopade 30:310–316

    Article  Google Scholar 

  25. Williams CM, Kaude JV, Newman RC, Peterson JC, Thomas WC (1988) Extracorporeal shock-wave lithotripsy: long-term complications. Am J Roentgenol 150:311–315

    Article  Google Scholar 

  26. Buchelt M, Kutschera H, Katterschafka T et al (1993) Ablation of polymethylmethacrylate by Ho: YAG, Nd: YAG, and Erb: YAG lasers. Lasers Surg Med 13:638–646

    Article  Google Scholar 

  27. Sherk HH, Lane G, Rhodes A, Black J (1995) Carbon dioxide laser removal of polymethylmethacrylate. Clin Orthop Relat Res:67–71

  28. J. Klanke, W.E. Siebert, C. Scholz, F. Dinkelaker, Histologic and scanning electron microscopic changes on cartilaginous surfaces after treatment with different lasers compared to mechanical tools, in: Laser in der Orthopädie. Thieme, Stuttgart, 1991, pp. 129–135.

  29. Honl M, Rentzsch R, Schwieger K et al (2003) The water jet as a new tool for endoprosthesis revision surgery - An in vitro study on human bone and bone cement. Biomed Mater Eng 13:317–325

  30. Kraaij G, Tuijthof GJM, Dankelman J, Nelissen RGHH, Valstar ER (2015) Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study. Med Eng Phys 37:245–250. https://doi.org/10.1016/j.medengphy.2014.12.009

    Article  Google Scholar 

  31. Hloch S, Foldyna J, Sitek L et al (2013) Disintegration of bone cement by continuous and pulsating water jet. Teh Vjesn Gas 20:593–598

  32. Hloch S, Foldyna J, Pude F et al (2015) Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty | Eksperimentalna in-vitro razgradnja koštanog cementa pomoću ultrazvučnog pulzirajućeg mlaza vode za potrebe revizijske artroplastike. Teh Vjesn 22. https://doi.org/10.17559/TV-20150822145550

  33. Hloch S, Nag A, Pude F, Foldyna J, Zeleňák M (2019) On-line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Measurement 147:106828

    Article  Google Scholar 

  34. ZVEI. (2002) Ultrasonic assembly of thermoplastic mouldings and semi-finished products : recommendations on methods, construction and applications. ZVEI, Frankfurt am Main

  35. APC International L (2002) Piezoelectric ceramics: principles and applications. APC International

  36. Davari P, Ghasemi N, Zare F (2014) Power converters design and analysis for high power piezoelectric ultrasonic transducers. In: 2014 16th European Conference on Power Electronics and Applications. IEEE, pp 1–9

  37. Chilibon I (2002) Underwater flextensional piezoceramic sandwich transducer. Sensors Actuators A Phys 100:287–292

    Article  Google Scholar 

  38. Wevers M, Lafaut J-P, Baert L, Chilibon I (2005) Low-frequency ultrasonic piezoceramic sandwich transducer. Sensors Actuators A Phys 122:284–289

    Article  Google Scholar 

  39. Gururaja TR, Schulze WA, Cross LE, Newnham RE, Auld BA, Wang YJ (1985) Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans Son Ultrason 32:481–498

  40. Nag A, Hloch S, Čuha D, Dixit AR, Tozan H, Petrů J, Hromasová M, Müller M (2019) Acoustic chamber length performance analysis in ultrasonic pulsating water jet erosion of ductile material. J Manuf Process 47:347–356

    Article  Google Scholar 

  41. Raj P, Hloch S, Tripathi R, Srivastava M, Nag A, Klichová D, Klich J, Hromasová M, Muller M, Miloslav L, Chattopadhyaya S, Adamcik P (2019) Investigation of sandstone erosion by continuous and pulsed water jets. J Manuf Process 42:121–130. https://doi.org/10.1016/j.jmapro.2019.04.035

    Article  Google Scholar 

  42. Srivastava M, Hloch S, Krejci L, Chattopadhyaya S, Dixit AR, Foldyna J (2018) Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening. Meas J Int Meas Confed 127:453–462. https://doi.org/10.1016/j.measurement.2018.06.012

  43. Thomas GP, Brunton JH (1970) Drop impingement erosion of metals. In: Proc. R. Soc. Lond. A. The Royal Society, pp 549–565

  44. Östlund F, Howie PR, Ghisleni R, Korte S, Leifer K, Clegg WJ, Michler J (2011) Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philos Mag 91:1190–1199

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Monika Hromasová for providing SEM analysis.

Funding

This study was supported by the Slovak Research and Development Agency under Contract No. APVV-17-0490 and VEGA 1/0096/18. The experiments were conducted with the support of the Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use - Sustainability Program, reg. no. LO1406, financed by the Ministry of Education, Youth and Sports of the Czech Republic, and with support for the long-term conceptual development of the research institution RVO: 68145535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Hloch.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, A., Hloch, S., Dixit, A.R. et al. Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. Int J Adv Manuf Technol 110, 829–840 (2020). https://doi.org/10.1007/s00170-020-05892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05892-9

Keywords

Navigation