Skip to main content
Log in

Heat conduction in microstructured solids under localised pulse loading

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The influence of a microstructure on heat conduction in solids is studied using the internal variable approach. Two variants of the internal variable treatment are compared by means of the numerical simulation of two-dimensional heat conduction in a plate under a localised thermal pulse loading. Computation of the same problem by the different internal variable descriptions produces qualitatively dissimilar results. The single internal variable approach leads to a diffusional type of the internal variable evolution. In contrast, the dual internal variable technique provides a wave-like evolution of the internal variables and, as the consequence, the corresponding wave-like heat transfer. The results are obtained in the dimensionless form, and parameters of models are chosen to emphasise the features of each model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bai, C., Lavine, A.: On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transf. 117(2), 256–263 (1995)

    Article  Google Scholar 

  2. Barletta, A., Zanchini, E.: Hyperbolic heat conduction and local equilibrium: a second law analysis. Int. J. Heat Mass Transf. 40(5), 1007–1016 (1997)

    Article  MATH  Google Scholar 

  3. Berezovski, A.: On the influence of microstructure on heat conduction in solids. Int. J. Heat Mass Transf. 103, 516–520 (2016)

    Article  Google Scholar 

  4. Berezovski, A.: Internal variables representation of generalized heat equations. Continuum Mech. Thermodyn. 31(6), 1733–1741 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. Berezovski, A., Ván, P.: Internal Variables in Thermoelasticity. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  6. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  7. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)

    Article  ADS  MATH  Google Scholar 

  8. Carlomagno, I., Sellitto, A., Cimmelli, V.: Dynamical temperature and generalized heat-conduction equation. Int. J. Non-Linear Mech. 79, 76–82 (2016)

    Article  ADS  Google Scholar 

  9. Cimmelli, V., Rogolino, P.: On the mathematical structure of thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 26(3), 231–242 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34(4), 299–333 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16(3), 1756–1807 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  ADS  Google Scholar 

  13. Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Ration. Mech. Anal. 80(2), 135–158 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coleman, B.D., Fabrizio, M., Owen, D.R.: Thermodynamics and the constitutive relations for second sound in crystals. In: New Perspectives in Thermodynamics, pp. 171–185. Springer (1986)

  15. Day, W.: Entropy and hidden variables in continuum thermodynamics. Arch. Ration. Mech. Anal. 62(4), 367–389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North Holland, Amsterdam (1962)

    MATH  Google Scholar 

  17. Grmela, M., Jou, D., Casas-Vázquez, J.: Nonlinear and Hamiltonian extended irreversible thermodynamics. J. Chem. Phys. 108(19), 7937–7945 (1998)

    Article  ADS  Google Scholar 

  18. Grot, R.A.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7(8), 801–814 (1969)

    Article  MATH  Google Scholar 

  19. Guo, Z.Y., Hou, Q.W.: Thermal wave based on the thermomass model. J. Heat Transf. 132(7), 072403-1–072403-6 (2010)

  20. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guyer, R., Krumhansl, J.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148(2), 778–788 (1966)

    Article  ADS  Google Scholar 

  22. Horn, R.A., Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Horstemeyer, M.F., Bammann, D.J.: Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26(9), 1310–1334 (2010)

    Article  MATH  Google Scholar 

  24. Ieşan, D.: On the theory of heat conduction in micromorphic continua. Int. J. Eng. Sci. 40(16), 1859–1878 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, C.: Positive definite matrices. Am. Math. Mon. 77(3), 259–264 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Jou, D., Lebon, G., Mongiovı, M., Peruzza, R.: Entropy flux in non-equilibrium thermodynamics. Phys. A Stat. Mech. Appl. 338(3–4), 445–457 (2004)

    Article  MathSciNet  Google Scholar 

  28. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  29. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)

    Article  Google Scholar 

  30. Kestin, J.: Internal variables in the local-equilibrium approximation. J. Non-Equilib. Thermodyn. 18(4), 360–379 (1993)

    Article  ADS  MATH  Google Scholar 

  31. Lebon, G., Grmela, M.: Weakly nonlocal heat conduction in rigid solids. Phys. Lett. A 214(3–4), 184–188 (1996)

    Article  ADS  Google Scholar 

  32. Lebon, G., Machrafi, H., Grmela, M., Dubois, C.: An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2135), 3241–3256 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Liu, W., Saanouni, K., Forest, S., Hu, P.: The micromorphic approach to generalized heat equations. J. Non-Equilib. Thermodyn. 42(4), 327–357 (2017)

    Article  ADS  Google Scholar 

  34. Lubliner, J.: On the structure of the rate equations of materials with internal variables. Acta Mech. 17(1–2), 109–119 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mariano, P.M.: Finite-speed heat propagation as a consequence of microstructural changes. Continuum Mech. Thermodyn. 29(6), 1241–1248 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15(2), 173–192 (1990)

    Article  ADS  Google Scholar 

  37. Maugin, G.A.: The Thermomechanics of Nonlinear Irreversible Behaviours. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  38. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75(10–12), 723 (2006)

    Article  ADS  MATH  Google Scholar 

  39. Maugin, G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  40. Maugin, G.A.: The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69, 79–86 (2015)

    Article  Google Scholar 

  41. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. J. Non Equilib. Thermodyn. 19, 217–249 (1994a)

    ADS  MATH  Google Scholar 

  42. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part II. Applications. J. Non-Equilib. Thermodyn. 19(3), 250–289 (1994b)

    ADS  MATH  Google Scholar 

  43. McDowell, D.: Internal state variable theory. In: Handbook of Materials Modeling, pp. 1151–1169. Springer (2005)

  44. Müller, I.: On the entropy inequality. Arch. Ration. Mech. Anal. 26(2), 118–141 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  45. Müller, I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  46. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  47. Muschik, W: Internal variables in non-equilibrium thermodynamics. In: Recent Developments in Micromechanics, pp. 18–34. Springer (1991)

  48. Nguyen, Q.S.: Gradient thermodynamics and heat equations. C. R. Méc. 338(6), 321–326 (2010)

    Article  ADS  MATH  Google Scholar 

  49. Özişik, M., Tzou, D.: On the wave theory in heat conduction. J. Heat Transf. 116(3), 526–535 (1994)

    Article  Google Scholar 

  50. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19(6), 433–455 (1971)

    Article  ADS  MATH  Google Scholar 

  51. Roetzel, W., Putra, N., Das, S.K.: Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42(6), 541–552 (2003)

    Article  Google Scholar 

  52. Rogolino, P., Kovács, R., Ván, P., Cimmelli, V.A.: Generalized heat-transport equations: parabolic and hyperbolic models. Continuum Mech. Thermodyn. 30(6), 1245–1258 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Sellitto, A., Cimmelli, V.A., Jou, D.: Linear and nonlinear heat-transport equations. In: Mesoscopic Theories of Heat Transport in Nanosystems, pp. 31–51. Springer (2016)

  54. Sellitto, A., Carlomagno, I., Di Domenico, M.: Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model. Z. Angew. Math. Phys. 72(1), 1–15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sobolev, S.: Nonlocal two-temperature model: application to heat transport in metals irradiated by ultrashort laser pulses. Int. J. Heat Mass Transf. 94, 138–144 (2016)

    Article  Google Scholar 

  56. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  57. Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  58. Valanis, K.: A gradient theory of internal variables. Acta Mech. 116(1–4), 1–14 (1996)

    MathSciNet  MATH  Google Scholar 

  59. Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. 524(8), 470–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Estonian Research Council under Institutional Research Funding IUT33-24 and Research Project RPG1227, and by the Centre of Excellence for Nonlinear Dynamic Behaviour of Advanced Materials in Engineering CZ.02.1.01/0.0/0.0/15_003/0000493 (Excellent Research Teams) in the framework of Operational Programme Research, Development and Education within institutional support RVO:61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezovski, A. Heat conduction in microstructured solids under localised pulse loading. Continuum Mech. Thermodyn. 33, 2493–2507 (2021). https://doi.org/10.1007/s00161-021-01032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01032-0

Keywords

Navigation