Skip to main content

Advertisement

Log in

Geophysical models of heat and fluid flow in damageable poro-elastic continua

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A rather general model for fluid and heat transport in poro-elastic continua undergoing possibly also plastic-like deformation and damage is developed with the goal to cover various specific models of rock rheology used in geophysics of Earth’s crust. Nonconvex free energy at small elastic strains, gradient theories (in particular the concept of second-grade nonsimple continua), and Biot poro-elastic model are employed, together with possible large displacement due to large plastic-like strains evolving during long time periods. Also the additive splitting is justified in stratified situations which are of interest in modelling of lithospheric crust faults. Thermodynamically based formulation includes entropy balance (in particular the Clausius–Duhem inequality) and an explicit global energy balance. It is further outlined that the energy balance can be used to ensure, under suitable data qualification, existence of a weak solution and stability and convergence of suitable approximation schemes at least in some particular situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E.C.: On the microstructural origin of certain inelastic models. ASME J. Eng. Math. Technol. 106, 326330 (1984)

    Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Unione Mat. Ital. 7, 105123 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  ADS  MATH  Google Scholar 

  4. Bažant, Z.P.: Scaling of Structural Strength, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  5. Bažant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  6. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  7. Bizzarri, A., Cocco, M.: Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws. J. Geophys. Res. 108, 2373 (2003)

    Article  ADS  Google Scholar 

  8. Boccardo, L., Gallouët, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchitté, G., Mielke, A., Roubíček, T.: A complete damage problem at small strains. Z. Angew. Math. Phys. 60, 205–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elasticity 91, 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bresch, D., Desjardins, B., Gisclon, M., Sart, R.: Instability results related to compressible Korteweg system. Ann. Univ. Ferrara (2008). doi:10.1007/s11565-008-0043-3

    MATH  Google Scholar 

  12. Bridgman, P.W.: The Nature of Thermodynamics. Harward University Press, Cambridge, MA (1943)

    Google Scholar 

  13. Cahn, J.W., Hilliard, J.E.: Free energy of a uniform system I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  14. Chipot, M.: Variational Inequalities and Flow in Porous Media. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  15. Darcy, H.: Les Fontaines Publiques de La Ville de Dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  16. Dieterich, J.H.: Applications of rate- and state-dependent friction to models of fault slip and earthquake occurence. In: Kanamori, H. (ed.) Earthquake Seismology. Chap. 4, Treatise on Geophysics, pp. 107–129. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  17. Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T.: Fault lubrication during earthquakes. Nature 471, 494–498 (2011)

    Article  ADS  Google Scholar 

  18. Dillon, O.W., Kratochvíl, J.: A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1513–1533 (1970)

    Article  MATH  Google Scholar 

  19. Dreyer, W., Giesselmann, J., Kraus, C.: Modeling of Compressible Electrolytes with Phase Transition. arXiv:1405.6625

  20. Dreyer, W., Giesselmann, J., Kraus, C., Rohde, C.: Asymptotic analysis for Korteweg models. Interfaces Free Bound. 14, 105–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duhem, P.: Traité dénergétique ou de thermodynamique générale. Gauthier-Villars, Paris (1911)

    Google Scholar 

  22. Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972) (Engl. transl. Springer, Berlin, 1976)

  23. Garcke, H.: On Cahn–Hilliard systems with elasticity. Proc. R. Soc. Edinb. A 133, 302–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  25. Feireisl, E., Petzeltov, H., Rocca, E.: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32, 1345–1369 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Feireisl, E., Petzeltová, H., Rocca, E., Schimperna, G.: Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20, 1129–1160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fried, E., Gurtin, M.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182, 513554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Green, A., Naghdi, P.: A general theory of an elastic–plastic continuum. Arch. Ration. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Méc. 14, 39–63 (1975)

    MATH  Google Scholar 

  30. Hamiel, Y., Lyakhovsky, V., Agnon, A.: Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks. Geophys. J. Int. 156, 701–713 (2004)

    Article  ADS  Google Scholar 

  31. Hamiel, Y., Lyakhovsky, V., Agnon, A.: Poroelastic damage rheology: dilation, compaction, and failure of rocks. Geochem. Geophys. Geosyst. 6, Q01008 (2005)

    Article  ADS  Google Scholar 

  32. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  33. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  34. Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis, 2nd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  35. Heinemann, C., Kraus, C.: Existence of weak solutions for Cahn–Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21, 321359 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Hutter, K.: Geophysical granular and particle laden flows: review of the field. Philos. Trans. R. Soc. Lond. A 363, 1497–1505 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hutter, K., Rajagopal, K.: On flows of granular materials. Contin. Mech. Thermodyn. 6, 81–139 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hutter, K., Wilmanski, K. (eds.): Kinetic and Continuum Theories of Granular and Porous Media. CISM Courses and Lectures No. 400. Springer, Vienna (1999)

    Google Scholar 

  39. Jirásek, M., Zeman, J.: Localization study of a regularized variational damage model. Intl. J. Solids Struct. 69–70, 131–151 (2015)

    Article  Google Scholar 

  40. Kruis, J., Koudelka, T., Krejčí, T.: Multi-physics analyses of selected civil engineering concrete structures. Commun. Comput. Phys. 12, 885–918 (2012)

    Article  Google Scholar 

  41. Kachanov, L.M.: Time of rupture process under deep conditions. Izv. Akad. Nauk. SSSR 8, 26 (1958)

    Google Scholar 

  42. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Springer, Dordrecht (1986)

    Book  MATH  Google Scholar 

  43. Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl. Sci. Exactes Nat. 6, 1–24 (1901)

    MATH  Google Scholar 

  44. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids (Interaction between Math. and Mech. Series). Springer, Cham, Heidelberg (2018) (to appear)

  46. Lamorgese, A.G., Molin, D., Mauri, R.: Phase field approach to multiphase flow modeling. Milan J. Math. 79, 597–642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lee, E., Liu, D.: Finite-strain elastic–plastic theory with application to plain-wave analysis. J. Appl. Phys. 38, 19–27 (1967)

    Article  ADS  Google Scholar 

  48. Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lyakhovsky, V.: Personal communications. Praha & Jerusalem, 2013–2015

  50. Lyakhovsky, V., Ben-Zion, Y.: Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophys. J. Int. 172, 651662 (2008)

    Article  Google Scholar 

  51. Lyakhovsky, V., Ben-Zion, Y.: A continuum damage-breakage faulting model and solid-granular transitions. Pure Appl. Geophys. 171, 3099–3123 (2014)

    Article  ADS  Google Scholar 

  52. Lyakhovsky, V., Ben-Zion, Y., Agnon, A.: Distributed damage, faulting, and friction. J. Geophys. Res. 102, 27635–27649 (1997)

    Article  ADS  Google Scholar 

  53. Lyakhovsky, V., Hamiel, Y.: Damage evolution and fluid flow in poroelastic rock. Izvestiya Phys. Solid Earth 43, 13–23 (2007)

    Article  ADS  Google Scholar 

  54. Lyakhovsky, V., Hamiel, Y., Ben-Zion, Y.: A non-local visco-elastic damage model and dynamic fracturing. J. Mech. Phys. Solids 59, 1752–1776 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Lyakhovsky, V., Reches, Z., Weiberger, R., Scott, T.E.: Nonlinear elastic behaviour of damaged rocks. Geophys. J. Int. 130, 157–166 (1997)

    Article  ADS  Google Scholar 

  56. Lyakhovsky, V., Zhu, W., Shalev, E.: Visco-poroelastic damage model for brittle-ductile failure of porous rocks. J. Geophys. Res. Solid Earth (2015). doi:10.1002/2014JB011805

    Google Scholar 

  57. Luterotti, F., Schmiperna, G., Stefanelli, U.: Global solution to a phase field model with irreversible and constrained phase evolution. Q. Appl. Math. 60, 301–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Matyska, C.: Mathematical Introduction to Geothermices and Geodymamics. Lecture Notes, Charles University, Prague. http://geo.mff.cuni.cz/studium/Matyska-MathIntroToGeothermicsGeodynamics

  59. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solid Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  60. Mielke, A., Roubíček, T.: Rate-Independent Systems—Theory and Application. Springer, New York (2015)

    Book  MATH  Google Scholar 

  61. Mielke, A., Roubíček, T., Zeman, J.: Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Eng. 199, 1242–1253 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Mielke, A., Stefanelli, U.: Linearized plasticity is the evolutionary \(\varGamma \)-limit of finite plasticity. J. Eur. Math. Soc. 15, 923–948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies. Elsevier, Amsterdam (1981)

    MATH  Google Scholar 

  64. Piechór, K.: Non-local Korteweg stresses from kinetic theory point of view. Arch. Mech. 60, 23–58 (2008)

    MathSciNet  MATH  Google Scholar 

  65. Podio-Guidugli, P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Podio-Guidugli, P., Vianello, M.: Hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22, 163–176 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Rajagopal, K.R., Roubíček, T.: On the effect of dissipation in shape-memory alloys. Nonlinear Anal. Real World Appl. 4, 581–597 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111, B05311 (2006)

    Article  ADS  Google Scholar 

  69. Roubíček, T.: Thermo-visco-elasticity at small strains with L1-data. Q. Appl. Math. 67, 47–71 (2009)

    Article  MATH  Google Scholar 

  70. Roubíček, T.: Approximation in multiscale modelling of microstructure evolution in shape-memory alloys. Contin. Mech. Thermodyn. 23, 491–507 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, 2nd edn. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  72. Roubíček, T.: A note about the rate-and-state-dependent friction model in a thermodynamical framework of the Biot-type equation. Geophys. J. Int. 199, 286–295 (2014)

    Article  ADS  Google Scholar 

  73. Roubíček, T.: Energy-conserving time-discretisation scheme for poroelastic media with regularized fracture emitting waves and heat. (Preprint No. 2016-011, Nečas center, Prague) Discrete Contin. Dyn. Syst. Ser. S (in print)

  74. Roubíček, T., Hoffmann, K.-H.: About the concept of measure-valued solutions to distributed parameter systems. Math. Methods Appl. Sci. 18, 671–685 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  75. Roubíček, T., Souček, O., Vodička, R.: A model of rupturing lithospheric faults with re-occurring earthquakes. SIAM J. Appl. Math. 73, 1460–1488 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  76. Roubíček, T., Tomassetti, G.: Thermomechanics of damageable materials under diffusion: modeling and analysis. Z. Angew. Math. Phys. 66, 3535–3572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. Roubíček, T., Valdman, J.: Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation. SIAM J. Appl. Math. 76, 314–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  79. Sciarra, G., Vidoli, S.: Asymptotic fracture modes in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials. J. Elasticity 113, 27–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Ration. Mech. Anal. 88, 135–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  81. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  82. Triantafyllidis, N., Aifantis, E.C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elasticity 16, 225–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubíček, T. Geophysical models of heat and fluid flow in damageable poro-elastic continua. Continuum Mech. Thermodyn. 29, 625–646 (2017). https://doi.org/10.1007/s00161-016-0547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0547-5

Keywords

Navigation