Skip to main content
Log in

Elastoplastic Deformations of Layered Structures

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We formulate a large-strain model of single-slip crystal elastoplasticity in the framework of energetic solutions. The numerical performance of the model is compared with laboratory experiments on the compression of a stack of papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polyconvexity. Math. Mod. Meth. Appl. Sci. 28, 2367–2401 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blaber, J., Adair, B., Antoniou, A.: Ncorr: open-source 2D digital image correlation Matlab software. Exp. Mech. 55 (2015)

  6. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. A 458, 299–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: Mathematical Elasticity Vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  10. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  11. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conti, S., Dolzmann, G., Kreisbeck, C.: Variational Modeling of slip: from crystal plasticity to geological strata. In: Analysis and Computation of Microstructure in Finite Plasticity (S. Conti and K. Hackl eds.). Lect. Notes Appl. Comput. Mech. 78, 31–62 (2015)

  13. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  14. Davoli, E., Francfort, G.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47, 526–565 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A 465, 2177–2196 (2009)

    MathSciNet  MATH  Google Scholar 

  16. DeSimone, A.: Coarse-grained models of materials with non-convex free-energy: two case studies. Comput. Methods Appl. Mech. Eng. 193, 5129–5141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117 (2009)

    Google Scholar 

  18. Forest, S., Sab, K.: Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models. Math. Mech. Solids 25(7), 1429–1449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Francfort, G., Mielke, A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Grandi, D., Stefanelli, U.: Finite plasticity in \(P^\top \! P\). Part I: constitutive model. Continuum Mech. Thermodyn. 29, 97–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grandi, D., Stefanelli, U.: Finite plasticity in \(P^\top \! P\). Part II: quasi-static evolution and linearization. SIAM J. Math. Anal. 49(2), 1356–1384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids. 48, 989–1036 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hagihara, K., Mayama, T., Honnami, M., Yamasaki, M., Izuno, H., Okamoto, T., Ohashi, T., Nakano, T., Kawamura, Y.: Orientation dependence of the deformation kink band formation behavior in Zn single crystal. Int. J. Plast. 77, 174–191 (2016)

    Article  Google Scholar 

  25. Horák, M., Kružík, M.: Gradient polyconvex material models and their numerical treatment. Int. J. Solids struct. 195, 57–65 (2020)

    Article  Google Scholar 

  26. Knapek, M., Svadlenka, K.: Elastoplastic deformations of layered structure, Figshare media project (2022). https://figshare.com/projects/Elastoplastic_deformations_of_layered_structure/132212

  27. Kratochvíl, J., Kružík, M.: Energetic approach to large strain gradient crystal plasticity. Acta Polytech. 52, 9–14 (2012)

    Article  Google Scholar 

  28. Kružík, M., Melching, D., Stefanelli, U.: Quasistatic evolution for dislocation-free finite plasticity. ESAIM Control Optim. Calc. Var. 26, 123 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kružík, M., Otto, F.: A phenomenological model for hysteresis in polycrystalline shape memory alloys. Zeit. Angew. Math. Mech. 84, 835–842 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  31. Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlin. Sci. 19(3), 221–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. MATLAB documentation (Optimization toolbox): fminunc function. https://www.mathworks.com/help/optim/ug/fminunc.html

  33. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application. Springer, New York (2015)

    Book  MATH  Google Scholar 

  35. Mielke, A., Roubíček, T.: Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Methods Appl. Sci. 26 (2016)

  36. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Moskovka, A., Valdman, J.: Fast MATLAB evaluation of nonlinear energies using FEM in 2D and 3D: nodal elements. Appl. Math. Comput. 424, 127048 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Ncorr - Open source 2D digital image correlation MATLAB software. https://ncorr.com

  39. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Sol. 47, 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Plummer, G., Rathod, H., Srivastava, A., Radovic, M., Ouisse, T., Yildizhan, M., Persson, P.O.Å., Lambrinou, K., Barsoum, M.W., Tucker, G.J.: On the origin of kinking in layered crystalline solids. Mater. Today 43, 45–52 (2021)

    Article  Google Scholar 

  41. Podio-Guidugli, P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 26–276 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Sol. Struct. 40, 401–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schulgasser, K.: On the in-plane elastic constants of paper. Fibre Sci. Technol. 15, 257–270 (1981)

    Article  Google Scholar 

  44. Shu, Y.C., Bhattacharya, K.: Domain patterns and macroscopic behavior of ferroelectric materials. Philos. Mag. B. 81, 2021–2054 (2001)

    Article  Google Scholar 

  45. Toupin, R.A.: Elastic materials with couplestresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  Google Scholar 

  46. Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  Google Scholar 

  47. Wadee, M.A., Hunt, G.W., Peletier, M.A.: Kink band instability in layered structures. J. Mech. Phys. Solids 52, 1071–1091 (2004)

    Article  MATH  Google Scholar 

  48. Yokoyama T., Nakai K.: Evaluation of in-plane orthotropic elastic constants of paper and paperboard. In: 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics

Download references

Acknowledgements

Martin Kružík and Jan Valdman were supported by the GAČR project 21-06569K. Martin Kružík also thanks the ESI Vienna for its hospitality during his stay in January-February 2022 and the European Regional Development Fund (Project no. CZ.\(02.1.01/0.0/0.0/16\_019/0 0 0 0778)\). Karel Švadlenka’s research was supported by JSPS Kakenhi Grant numbers 19K03634 and 18H05481. Support in the framework of Visegrad Group (V4)-Japan Joint Research Program – Advanced Materials under grant No. 8F21011 is gratefully acknowledged by Daria Drozdenko and Kristián Máthis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kružík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdenko, D., Knapek, M., Kružík, M. et al. Elastoplastic Deformations of Layered Structures. Milan J. Math. 90, 691–706 (2022). https://doi.org/10.1007/s00032-022-00368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-022-00368-9

Navigation