Skip to main content
Log in

Uniqueness of the nonlinear Schrödinger equation driven by jump processes

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In a recent paper by the first two authors, existence of martingale solutions to a stochastic nonlinear Schrödinger equation driven by a Lévy noise was proved. In this paper, we prove pathwise uniqueness, uniqueness in law and existence of strong solutions to this problem using an abstract uniqueness result of Kurtz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahlali, K., Mezerdi, B., N’zi, M., Ouknine, Y.: Weak solutions and a Yamada–Watanabe theorem for FBSDEs. Random Oper. Stoch. Equ. 15, 271–285 (2007)

    Article  MathSciNet  Google Scholar 

  2. Barczy, M., Li, Z., Pap, G.: Yamada–Watanabe results for stochastic differential equations with jumps. Int. J. Stoch. Anal., Art. ID 460472, 23 (2015)

  3. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Book  Google Scholar 

  4. Brzeźniak, Z.: Stochastic partial differential equations in M-type \(2\) Banach spaces. Potential Anal. 4, 1–45 (1995)

    Article  MathSciNet  Google Scholar 

  5. Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145, 615–637 (2009)

    Article  Google Scholar 

  6. Brzeźniak, Z., Hausenblas, E.: Uniqueness in law of the Itô integral with respect to Lévy noise. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, Volume 63 of Progress in Probability, pp. 37–57. Birkhäuser/Springer Basel AG, Basel (2011)

    Chapter  Google Scholar 

  7. Brzeźniak, Z., Hausenblas, E., Razafimandimby, P.: Stochastic reaction diffusion equation driven by jump processes. Potential Anal. 49(1), 131–201 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cherny, A.S.: On the strong and weak solutions of stochastic differential equations governing Bessel processes. Stoch. Stoch. Rep. 70, 213–219 (2000)

    Article  MathSciNet  Google Scholar 

  9. de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation with multiplicative noise. Commun. Math. Phys. 205, 161–181 (1999)

    Article  Google Scholar 

  10. de Bouard, A., Debussche, A.: The stochastic nonlinear Schrödinger equation in \(H^1\). Stoch. Anal. Appl. 21, 97–126 (2003)

    Article  Google Scholar 

  11. de Bouard, A., Hausenblas, E.: The nonlinear Schrödinger equation driven by jump processes. J. Math. Anal. Appl. 475(1), 215–252 (2019)

    Article  MathSciNet  Google Scholar 

  12. Engelbert, H.: On the theorem of T. Yamada and S. Watanabe. Stoch. Stoch. Rep. 36, 205–216 (1991)

    Article  MathSciNet  Google Scholar 

  13. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, Volume 24 of North-Holland Mathematical Library, 2nd edn. North-Holland, Kodansha, Ltd., Amsterdam, Tokyo (1989)

    Google Scholar 

  14. Jacod, J.: Weak and strong solutions of stochastic differential equations. Stochastics 3, 171–191 (1980)

    Article  MathSciNet  Google Scholar 

  15. Kallenberg, O.: Foundations of Modern Probability. Probability and its Applications, 2nd edn. Springer, New York (2002)

    Book  Google Scholar 

  16. Kechris, A.S.: Classical Descriptive Set Theory, Volume 156 of Graduate Texts in Mathematics. Springer, New York (1995)

    Book  Google Scholar 

  17. Kurtz, T.G.: The Yamada–Watanabe–Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab. 12, 951–965 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kurtz, T.G.: Weak and strong solutions of general stochastic models. Electron. Commun. Probab. 19(58), 16 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  20. Linde, W.: Probability in Banach Spaces: Stable and Infinitely Divisible Distributions, 2nd edn. Wiley, Chichester (1986)

    MATH  Google Scholar 

  21. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Diss. Math. 426, 1–63 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, No. 3. Academic Press, New York (1967)

    Google Scholar 

  23. Qiao, Huijie: A theorem dual to Yamada–Watanabe theorem for stochastic evolution equations. Stoch. Dyn. 10, 367–374 (2010)

    Article  MathSciNet  Google Scholar 

  24. Rüdiger, B., Tappe, S.: Isomorphisms for spaces of predictable processes and an extension of the Itô integral. Stoch. Anal. Appl. 30, 529–537 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tappe, S.: The Yamada–Watanabe theorem for mild solutions to stochastic partial differential equations. Electron. Commun. Probab. 18, 13 (2013)

    Article  MathSciNet  Google Scholar 

  26. Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability distributions on Banach spaces. Volume 14 of Mathematics and Its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987)

    Book  Google Scholar 

  27. Villarroel, J., Maldonado, M., Prada, J.: On the integrability of the nonlinear Schrödinger equation with randomly dependent linear potential. J. Phys. A 47, 215202, 19 (2014)

    Article  MathSciNet  Google Scholar 

  28. Villarroel, J., Montero, M.: On the integrability of the Poisson driven stochastic nonlinear Schrödinger equations. Stud. Appl. Math. 127, 372–393 (2011)

    Article  MathSciNet  Google Scholar 

  29. Woyczynski, W.: Geometry and martingales in Banach spaces. In: Probability–Winter School (Proceedings of Fourth Winter School, Karpacz, 1975). Lecture Notes in Mathematics, vol. 472, pp. 229–275. Springer, Berlin (1975)

    Google Scholar 

  30. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155–167 (1971)

    Article  MathSciNet  Google Scholar 

  31. Zhao, H.: Yamada–Watanabe theorem for stochastic evolution equation driven by Poisson random measure. Int. Sch. Res. Not. Art. ID 982190, 7 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ondreját.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported by the FWF-Project P17273-N12. The research of the third author on this work was supported by the GAČR Grant No. GA 15-08819S.

Appendices

Appendix A: Uniqueness of the stochastic integral

Let X and E be two separable Banach spaces. Later on we will take X to be one of the spaces E or \(L^p(S,\nu ,E)\). Let \({\mathfrak {A}}=(\Omega ,{{ {\mathcal {F}} }},({{ {\mathcal {F}} }}_t)_{t\in [0,T]},{{\mathbb {P}}})\) be an arbitrary filtered probability space and \(\eta \) be a Poisson random measure defined over \({\mathfrak {A}}\). Let \({\mathcal {N}}(\Omega \times [0,T];X)\) be the space of (equivalence classes of) progressively measurable functions \(\xi :\Omega \times [0,T]\rightarrow X\).

For \( q\in (1,\infty ) \) we set

$$\begin{aligned} \;\; {\mathcal {N}}^q(\Omega \times [0,T],{\mathcal {F}};X)= & {} \left\{ \xi \in {\mathcal {N}}(\Omega \times [0,T],{\mathcal {F}};X): \; \int _0^\infty \vert \xi (t)\vert ^q\,dt<\infty \text{ a.s. } \right\} , \nonumber \\ \end{aligned}$$
(A.1)
$$\begin{aligned} \;\; \;\; {\mathcal {M}}^q(\Omega \times [0,T],{\mathcal {F}};X)= & {} \left\{ \xi \in {\mathcal {N}}(\Omega \times [0,T],{\mathcal {F}};X):{\mathbb {E}}\int _ 0^\infty \vert \xi (t)\vert ^q\,dt<\infty \right\} . \nonumber \\ \end{aligned}$$
(A.2)

Let E be a space of martingale type p, put \(X=L^p(S, \nu ;E)\), and let \(\xi \in {{ {\mathcal {N}} }}^ p(\Omega \times [0,T],{{ {\mathcal {F}} }};X)\). In particular, \(\xi : \Omega \times [0,T]\times S\rightarrow E\) is a progressively measurable process such that \({{\mathbb {P}}}\)-a.s.

$$\begin{aligned} \int _0^T \int _S\vert \xi (r,z)\vert _E^p\, \nu (dz)\,dr< & {} \infty . \end{aligned}$$
(A.3)

Let us consider the law of the triplet \((\eta ,\xi ,I)\), where I is the Itô integral of \(\xi \) with respect to \(\eta \) as defined on page 5. It was proved in Theorem 2.4 of [6] that the law is unique in case

$$\begin{aligned} {\mathbb {E}}\int _0^T \int _S\vert \xi (r,z)\vert _E^p\, \nu (dz)\,dr< & {} \infty . \end{aligned}$$

In this “Appendix” we want to extend this result to all progressively processes \(\xi \) satisfying only (A.3). However, before stating the Theorem we want to define uniqueness in law. Here, it is important that evaluating the integral, the underlying probability space can be changed with having any consequence for the laws.

Theorem A.1

Let \((\Omega _i,{{ {\mathcal {F}} }}_i,{{\mathbb {P}}}_i)\), \(i=1,2\), be two probability spaces and \(({{ {\mathcal {F}} }}^ i_t)_{t\in [0,T]}\) a filtration of \((\Omega _i,{{ {\mathcal {F}} }}_i)\). Assume that \(\{(\xi _i,\eta _i),n\in {\mathbb {N}}\}\), \(i=1,2\), are two \(L ^ p([0,T];L^p(S,\nu ,E)) \times {{M}_{{\bar{{\mathbb {N}}}}}( \{S_n\times (0,T]\})}\) valued random variables defined on \((\Omega _i,{{ {\mathcal {F}} }}_i,{{ {\mathcal {F}} }}^ i_t,{{\mathbb {P}}}_i)\), \(i=1,2\), respectively. Assume that \(\eta _1\) is a time homogeneous Poisson random measure over \((\Omega _1,{{ {\mathcal {F}} }}_1,({{ {\mathcal {F}} }}^ 1_t)_{t\in [0,T]},{{\mathbb {P}}}_1)\) with intensity \(\nu \). Furthermore, assume that \(\xi _1\in {{ {\mathcal {N}} }}(\Omega _1\times [0,T];L^p(S,\nu ,E))\) with respect to \(({{ {\mathcal {F}} }}^ 1_t)_{t\in [0,T]}\).

Let

$$\begin{aligned} I _i (t): =I(\xi _i,\eta _i)(t)= \int _0 ^ t \int _S \xi _i(s,z)\, {\tilde{\eta }}_i(dz,ds). \end{aligned}$$

If \({{ {\mathcal {L}} }}aw( (\xi _1,\eta _1))={{ {\mathcal {L}} }}aw((\xi _2,\eta _2)) \) on

$$\begin{aligned} L ^ p([0,T];L ^ p(S,\nu ;E)) \times {{M}_{{\bar{{\mathbb {N}}}}}( \{S_n\times (0,T]\})}, \end{aligned}$$

then \({{ {\mathcal {L}} }}aw( (I _1,\xi _1,\eta _1))={{ {\mathcal {L}} }}aw((I _2,\xi _2,\eta _2)) \) on

$$\begin{aligned} L^p([0,T];E)\cap {\mathbb {D}}([0,T];E)\times L ^ p({{\mathbb {R}}}_+;L ^ p(S,\nu ;E))\times {{M}_{{\bar{{\mathbb {N}}}}}( \{S_n\times (0,T]\})}. \end{aligned}$$

Proof

In fact, Theorem A.1 follows from Theorem 2.4 in [6] by localization. First, for a fixed \(R>0\) let us introduce the stopping times

$$\begin{aligned} \tau ^R_i=\inf _{t>0} \left\{ \int _0^t|\xi (s)|_X^p \, ds \ge R\right\} . \end{aligned}$$

Put \(\xi ^R_i := 1_{[0,\tau ^R_i]} \, \xi \). Observe, using the shifted Haar projection defined in (B.2) one obtains a sequence of simple functions \(\{{\mathfrak {h}} ^ s_n \xi ^R_i:n\in {\mathbb {N}}\}\) such that \({{\mathbb {P}}}^i\)-a.s. \({\mathfrak {h}} ^ s_n \xi ^R_i\rightarrow \xi ^R_i\) in \(L^p([0,T];E)\). In addition

$$\begin{aligned} {\mathbb {E}}\int _0^T \int _S\vert \xi _i^R(r,z)\vert _E^p\, \nu (dz)\,dr\le R. \end{aligned}$$

Thus, Theorem 2.4 in [6] is applicable and we have \( {{\mathcal {L}}aw}( (I ^R_1,\xi ^R _1,\eta _1))={{\mathcal {L}}aw}((I ^R_2,\xi ^R _2,\eta _2))\) on

$$\begin{aligned} ({\mathbb {D}}([0,T];X)\cap L^p([0,T];X))\times L^p([0,T];L^p(Z,\nu ;E))\times {{M}_{{\bar{{\mathbb {N}}}}}( \{S_n\times (0,T]\})}, \end{aligned}$$

where

$$\begin{aligned} I^R_i(t) = \int _0 ^ t \int _S \xi ^R_i(s,z)\, {\tilde{\eta }}_i(ds,dz), \quad t\in [0,T]. \end{aligned}$$
(A.4)

Let

$$\begin{aligned} A_i^R:= \left\{ \omega \in \Omega _i: \int _0^T \left| \xi _i(s) \right| _{L^p(Z,\nu ;E)}^p \, ds\le R\right\} . \end{aligned}$$

Then, first, on \(A^R_i\), \(\xi _i^R=\xi _i\), secondly, \(A^ {R_1}\supset A^ {R_2}\) for \(R_1>R_2\), and, thirdly, by Lemma 1.14 [15], \(\lim _{R\rightarrow \infty } {{\mathbb {P}}}\left( A^R_i\right) ={{\mathbb {P}}}\left( \Omega \right) =1\). Take a set

$$\begin{aligned}&B_1\times B_2\times B_3 \in {{ {\mathcal {B}} }}({\mathbb {D}}([0,T];X)\cap L^p([0,T];B)) \\&\quad \times {{ {\mathcal {B}} }}( L^p([0,T];L^p(Z,\nu ;E)))\times {{ {\mathcal {B}} }}( {{M}_{{\bar{{\mathbb {N}}}}}( \{S_n\times (0,T]\})}). \end{aligned}$$

Since \(\xi ^ R_i\le \xi _i\), we have by the dominated convergence Theorem

$$\begin{aligned}&{{\mathbb {P}}}_1\left( (u_1,\xi _1,\eta )\in B_1\times B_2\times B_3\right) \\&\quad = \lim _{R\rightarrow \infty } {{\mathbb {P}}}_1\left( (u_1,\xi _1,\eta )\in B_1\times B_2\times B_3, \tau _1^R>T \right) \\&\quad = \lim _{R\rightarrow \infty } {{\mathbb {P}}}_1\left( (u ^R_1,\xi ^R_1,\eta )\in B_1\times B_2\times B_3\right) \\&\quad = \lim _{R\rightarrow \infty } {{\mathbb {P}}}_2\left( (u ^R_2,\xi ^R_2,\eta )\in B_1\times B_2\times B_3\right) \\&\quad = \lim _{R\rightarrow \infty } {{\mathbb {P}}}_2\left( (u ^R_2,\xi ^R_2,\eta )\in B_1\times B_2\times B_3, \tau _1^R>T \right) \\&\quad = {{\mathbb {P}}}_2\left( (u _2,\xi _2,\eta )\in B_1\times B_2\times B_3\right) . \end{aligned}$$

Now, the assertion follows. \(\square \)

Appendix B: the Haar projection

1.1 The Haar projection onto \(L^ q\)-spaces

For \(n\in {\mathbb {N}}\), let \(\Pi ^n=\{ s^n_0=0<s^n_1<\cdots <s^n_{2^n}\}\) be a partition of the interval [0, T] defined by \(s_j ^ n=j\,2 ^ {-n}T\), \(j=1,\ldots , 2^n\). Each interval of the form \((s_{j-1} ^ n,s_j ^ n]\), where \(n\in {\mathbb {N}}\) and \(j=1,\ldots , 2^n\) is called a dyadic interval. For \(n\in {\mathbb {N}}\), the \(j^ {th}\) element, for \(j=1,\ldots , 2^n\), of the Haar system of order n is the indicator function of the interval \((s_{j-1}^n,s_j^{n}]\), i.e. \(1_{(s_{j-1}^{n},s_j^{n}]}\). First, given a function \(x:[0,T]\rightarrow Y\), Y a Banach space, let us define the averaging operator \(\iota _{j,n}: L ^ p(0,T,Y)\rightarrow Y\) over the interval \((s^n_{j-1},s^n_{j}]\) by

$$\begin{aligned} \iota _{j,n}(x) := \frac{1}{s^n_{j}-s^n_{j-1}}\; \int _{s^ n_{j-1}}^{s ^ n_{j}} x(s)\,ds, \; x\in L ^ p([0,T],Y). \end{aligned}$$
(B.1)

For \(n\in {\mathbb {N}}\), let \({\mathfrak {h}} ^ s_n: L ^ p([0,T],Y)\rightarrow L ^ p([0,T],Y)\) be the shifted Haar projection of order n, i.e.

$$\begin{aligned} {\mathfrak {h}} ^ s_n x =\sum _{j=1} ^{2^n -1} 1_{(s^n_j,s^n_{j+1}]}\otimes \iota _{j,n}(x), \;\; x\in L ^ p([0,T];Y), \end{aligned}$$
(B.2)

where we put \({\iota }_{0,n}=0\) for every \(n\in {\mathbb {N}}\). In the above, for \(f\in L ^ p([0,T],{\mathbb {R}})\) and \(y\in Y\), by \(f\otimes y\) we mean an element of \(L ^ p([0,T],Y)\) defined by \([0,T]\ni t\mapsto f(t) y\in Y\). For completeness, let us cite the following results taken from [6, Appendix B, Theorem B.2].

Proposition B.1

The following holds:

  1. (i)

    For any \(n\in {\mathbb {N}}\), the shifted Haar projection \({\mathfrak {h}} ^ s_n:L ^ p([0,T] ;Y)\rightarrow L ^ p([0,T];Y)\) is a continuous operator.

  2. (ii)

    For all \(x\in L ^ p([0,T] ;Y)\), \({\mathfrak {h}} ^ s_n x\rightarrow x\) in \(L ^ p([0,T] ;Y)\).

Remark B.1

Observe, for any \(\xi \in {{ {\mathcal {N}} }}_p([0,T] ;X)\), the process \([0,T ]\ni t\mapsto {\mathfrak {h}} ^ s_n x(t)\) is simple, left continuous and predictable and the sequence \(\{ {\mathfrak {h}} ^ s_n \xi :n\in {\mathbb {N}}\}\) converges to \(\xi \) in \(L ^p([0,T];Y)\).

Appendix C: Polish measure spaces

Lemma C.1

Let \((S,{{ {\mathcal {S}} }})\) be a Polish space and the family \(\{S_n\in {{ {\mathcal {S}} }}\}\) satisfy \(S_n\uparrow S\). Then \((M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),{{ {\mathcal {M}} }}_{\bar{\mathbb {N}}}(\{S_n\}))\) is a Polish space.

Let \((S,{{ {\mathcal {S}} }})\) be a Polish space and let \(S_n\in {{ {\mathcal {S}} }}\) satisfy \(S_n\uparrow S\). Then there exists a metric \(\varrho \) on S such that \((S,\varrho )\) is a complete separable metric space, \(\mathscr {B}(S,\varrho )={{ {\mathcal {S}} }}\) and \(S_n\) is closed for every \(n\in \mathbb {N}\), see, e.g. [16, (13.5) p. 83]. Consider the Lévy-Prokhorov metric on \(M_+(S,\varrho )\)

$$\begin{aligned} \pi (\mu ,\nu )=\inf \,\{\varepsilon >0:\mu (A)\le \nu (A^\varepsilon )+\varepsilon ,\,\nu (A)\le \mu (A^\varepsilon )+\varepsilon ,\,\forall A\in {{ {\mathcal {S}} }}\} \end{aligned}$$

where \(A^\varepsilon =\{x\in S:\exists a\in A,\,\varrho (x,a)<\varepsilon \}\). Then \((M_+(S,\varrho ),\pi )\) is a complete separable metric space and \(\pi (\mu _n,\mu )\rightarrow 0\) iff

$$\begin{aligned} \int _Sf\,d\mu _n\rightarrow \int _Sf\,d\mu ,\qquad \forall f\in C_b(S,\varrho ), \end{aligned}$$

see, e.g., [3, pp. 72–73], where the proof for probability measures can be quite easily adapted to finite non-negative measures.

Lemma C.2

The \(\sigma \)-algebra \({\mathcal {M}}_+(S)\) on \(M_+(S)\) generated by the mappings \(\mu \mapsto \mu (A)\), \(A\in {{ {\mathcal {S}} }}\) coincides with the Borel \(\sigma \)-algebra \({\mathscr {B}}(M_+(S),\pi )\).

Proof

The mapping \(\mu \mapsto \mu (A)\) is upper semicontinuous on \((M_+(S),\pi )\) for every \(A\subseteq S\) closed and lower semicontinuous for every \(A\subseteq S\) open, hence Borel measurable for every \(A\in {{ {\mathcal {S}} }}\). In particular, \({\mathcal {M}}_+(S)\subseteq {\mathscr {B}}(M_+(S),\pi )\). On the other hand, let \({\mathcal {G}}\) be a countable basis of open sets in \((S,\varrho )\) closed under finite unions. Then

$$\begin{aligned} \{\mu :\,\pi (\mu ,\theta )<r\}= & {} \bigcup _{\varepsilon \in \mathbb {Q}\cap (0,r)}\bigcap _{A\in \mathcal G}\{\mu :\,\mu (A)\le \theta (A^\varepsilon ) \\&+\varepsilon ,\,\theta (A)\le \mu (A^\varepsilon )+\varepsilon \}\in \mathcal M_+(S). \end{aligned}$$

Hence open balls in \((M_+(S),\pi )\) belong to \({\mathcal {M}}_+(S)\) and since \((M_+(S),\pi )\) is separable, every open set is a countable union of open balls. Consequently, every open set in \((M_+(S),\pi )\) belong to \({\mathcal {M}}_+(S)\), hence \(\mathscr {B}(M_+(S),\pi )\subseteq {\mathcal {M}}_+(S)\). \(\square \)

Lemma C.3

The set of integer-valued measures \(M_{\mathbb {N}}(S)\) is closed in \((M_+(S,\varrho ),\pi )\).

Proof

Let \(\pi (\mu _n,\mu )\rightarrow 0\), \(\mu _n\) be integer-valued and \(k<\mu (A)<k+1\) for some integer k and some \(A\in {{ {\mathcal {S}} }}\). By regularity, we can find a compact \(C\subseteq A\) such that \(k<\mu (C)\le \mu (A)<k+1\) and \(\delta >0\) such that \(k<\mu (C)-\delta \) and \(\mu (C^{2\delta })+\delta <k+1\). If \(\pi (\mu _n,\mu )<\delta \) then

$$\begin{aligned} k<\mu (C)-\delta \le \mu _n(C^\delta )\le \mu (C^{2\delta })+\delta <k+1, \end{aligned}$$

which cannot happen as \(\mu _n(C^\delta )\) is an integer. \(\square \)

Lemma C.4

\((M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),{{ {\mathcal {M}} }}_{{\bar{{\mathbb {N}}}}}(\{S_n\}))\) is a Polish space.

Proof

Consider the metric

$$\begin{aligned} \rho (\mu ,\nu )=\sum _{n=1}^\infty 2^{-n}\min \,\{1,\pi (\mu (\cdot \cap S_n),\nu (\cdot \cap S_n))\},\qquad \mu ,\nu \in M_{{\bar{{\mathbb {N}}}}}(\{S_n\}). \end{aligned}$$

Then \((M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),\rho )\) is a metric space and the mapping

$$\begin{aligned} I:(M_{{\bar{{\mathbb {N}}}}}(\{S_n\},\rho )\rightarrow (M_{\mathbb {N}}(S),\pi )^{\mathbb {N}}:\mu \mapsto (\mu (\cdot \cap S_n))_{n\in \mathbb {N}} \end{aligned}$$

is a homeomorphism onto a closed set in \((M_{\mathbb {N}}(S),\pi )^{\mathbb {N}}\), hence \((M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),\rho )\) is a complete separable metric space by Lemma C.3. To show closedness, let \(\lim _{j\rightarrow \infty }\pi (\mu _j(\cdot \cap S_n),\theta _n)=0\) for every \(n\in \mathbb {N}\), and let \(m<k\). If \(f\in C_b(S_m)\) and we extend f by zero on \(S{\setminus } S_m\) then \(f\in C_b(S)\) since \(S_m\) is clopen. So \(\partial S_n=\emptyset \),

$$\begin{aligned} \theta _n(S{\setminus } S_n)=\lim _{j\rightarrow \infty }\mu _j((S{\setminus } S_n)\cap S_n)=0,\qquad \forall n\in \mathbb {N}, \end{aligned}$$

and

$$\begin{aligned} \int _Sf\,d\theta _k=\lim _{j\rightarrow \infty }\int _Sf\,d\mu _j(\cdot \cap S_k)=\lim _{j\rightarrow \infty }\int _Sf\,d\mu _j(\cdot \cap S_m)=\int _Sf\,d\theta _m \end{aligned}$$

so \(\theta _m(\cdot )=\theta _k(\cdot \cap S_m)\). In particular, \(\theta _n(A)\uparrow \) for every \(A\in {{ {\mathcal {S}} }}\) and \(\theta (A)=\lim _n\theta _n(A)\) is a \(\sigma \)-additive, \(\bar{\mathbb {N}}\)-valued measure on \({{ {\mathcal {S}} }}\) and \(\theta _m(\cdot )=\theta (\cdot \cap S_m)\).

Now, by Lemma C.2, the mapping \(\mu \mapsto \mu (A\cap S_k)\) is \({\mathscr {B}}(M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),\rho )\) measurable for every \(k\in \mathbb {N}\) and every \(A\in {{ {\mathcal {S}} }}\) since I is Borel measurable. Hence \({{ {\mathcal {M}} }}_{{\bar{{\mathbb {N}}}}}(\{S_n\})\subseteq {\mathscr {B}}(M_{\bar{\mathbb {N}}}(\{S_n\}),\rho )\). On the other hand, the mapping

$$\begin{aligned} (M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),{{ {\mathcal {M}} }}_{{\bar{{\mathbb {N}}}}}(\{S_n\}))\rightarrow (M_{\mathbb {N}}(S),{\mathscr {B}}(M_{\mathbb {N}}(S))):\mu \mapsto \mu (\cdot \cap S_k) \end{aligned}$$

is measurable for every \(k\in \mathbb {N}\) by Lemma C.2. So, if \(\theta \in M_{{\bar{{\mathbb {N}}}}}(\{S_n\})\) is fixed, the mapping

$$\begin{aligned} (M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),{{ {\mathcal {M}} }}_{{\bar{{\mathbb {N}}}}}(\{S_n\}))\rightarrow \mathbb {R}:\mu \mapsto \pi (\mu (\cdot \cap S_k),\theta (\cdot \cap S_k)) \end{aligned}$$

is measurable for every \(k\in \mathbb {N}\). Consequently, the mapping

$$\begin{aligned} (M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),{{ {\mathcal {M}} }}_{{\bar{{\mathbb {N}}}}}(\{S_n\}))\rightarrow \mathbb {R}:\mu \mapsto \rho (\mu ,\theta ) \end{aligned}$$

is measurable. Since \((M_{{\bar{{\mathbb {N}}}}}(\{S_n\}),\rho )\) is a separable metric space and every open set is a countable union of open balls, we conclude that \({\mathscr {B}}(M_{\bar{\mathbb {N}}}(\{S_n\}),\rho )\subseteq {{ {\mathcal {M}} }}_{{\bar{{\mathbb {N}}}}}(\{S_n\})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bouard, A., Hausenblas, E. & Ondreját, M. Uniqueness of the nonlinear Schrödinger equation driven by jump processes. Nonlinear Differ. Equ. Appl. 26, 22 (2019). https://doi.org/10.1007/s00030-019-0569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0569-3

Keywords

Mathematics Subject Classification

Navigation