Skip to main content
Log in

\(L^q\)-Solution of the Robin Problem for the Stokes System with Coriolis Force

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We define single layer potential and double layer potential for the stationary Stokes system with Coriolis term and study properties of these potentials. Then using the integral equation method we study the Dirichlet problem, the Neumann problem and the Robin problem for the Stokes system with Coriolis term. We look for solutions of the problems such that the maximal functions of the velocity \(\mathbf{u}\), of the pressure p and of \(\nabla \mathbf{u}\) are q-integrable on the boundary, and the boundary conditions are fulfilled in the sense of a non-tangential limit. As a consequence we study solutions of the Dirichlet problem for an exterior domain in the homogeneous Sobolev spaces \(D^{k,q}(\Omega ,{\mathbb {R}}^3)\times D^{k-1,q}(\Omega )\) and in weighted Besov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abada, N., Boulmezaoud, T.Z., Kerdid, N.: The Stokes flow around a rotating body in the whole space. J. Math. Soc. Jpn. 65, 607–632 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bemelmans, J., Galdi, G.P., Kyed, M.: Fluid flow around floating bodies, I: the hydrostatic case. J. Math. Fluid Mech. 14, 751–770 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Brown, R., Mitrea, I., Mitrea, M., Wright, M.: Mixed boundary value problems for the Stokes system. Trans. Am. Math. Soc. 362, 1211–1230 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Chang, T.: Boundary integral operators over Lipschitz surfaces for a Stokes equation in \(R^n\). Potential Anal. 29, 105–117 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Chang, T.K., Choe, H.J.: Estimates of the Green’s functions for the elasto-static equations and Stokes equations in a three dimensional Lipschitz domain. Potential Anal. 30, 85–99 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Chang, T., Lee, K.: Spectral properties of the layer potentials on Lipschitz domains. Ill. J. Math. 52, 463–472 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Chang, T.K., Pahk, D.H.: Spectral properties for layer potentials associated to the Stokes equation in Lipschitz domains. Manuscripta Math. 130, 359–373 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Deuring, P.: \({L}^p\)-theory for the Stokes system in 3D domains with conical boundary points. Indiana Univ. Math. J. 47, 11–47 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Deuring, P.: The resolvent problem for the Stokes system in exterior domains: an elementery approach. Math. Methods Appl. Sci. 13, 335–349 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Devore, R.A., Sharpley, R.C.: Besov spaces on domains in \(R^d\). Trans. Am. Math. Sci. 335, 843–864 (1993)

    MATH  Google Scholar 

  11. Dindoš, M., Mitrea, M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and \(C^1\) domains. Arch. Rational Mech. Anal. 174, 1–37 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Dobrowolski, M.: Angewandte Functionanalysis. Functionanalysis, Sobolev-Räume und Elliptische Differentialgleichungen. Springer, Berlin (2006)

    Google Scholar 

  13. Dunford, N., Schwartz, J.T.: Linear Operators I, General Theory. Interscience Publishers (1958)

  14. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differentiable Operators. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  15. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Fabes, E.B., Lewis, J.E., Riviere, N.M.: Singular integrals and hydrodynamic potentials. Am. J. Math. 99, 601–625 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Farwig, R.: Estimates of Lower Order Derivatives of Viscous Fluid Past a Rotating Obstacle. Regularity and Other Aspects of the Navier–Stokes Equations. Banach Center Publications (2005)

  18. Farwig, R.: An \(L^q\)-analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. 58, 129–147 (2005)

    MATH  Google Scholar 

  19. Farwig, R., Galdi, G.P., Kyed, M.: Asymptotic structure of a Leray solution to the Navier–Stokes flow around a rotating body. Pac. J. Math. 253, 367–382 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Farwig, R., Hishida, T.: Stationary Navier–Stokes flow around a rotating obstacle. Functialaj Ekvacioj 50, 371–403 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Farwig, R., Hishida, T.: Asymptotic profiles of steady Stokes and Navier–Stokes flows around a rotating obstacle. Ann. Univ. Ferrara 55, 263–277 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Farwig, R., Hishida, T.: Asymptotic profile of steady Stokes flow around a rotating obstacle. Manuscripta Math. 136, 315–338 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Farwig, R., Hishida, T.: Leading term at infinity of steady Navier–Stokes flow around a rotating obstacle. Math. Nachr. 284, 2065–2077 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Farwig, R., Hishida, T., Müller, D.: \(L^q\)-theory of a singular winding integral operator arising from fluid dynamics. Pac. J. Math. 215, 297–313 (2004)

    MATH  Google Scholar 

  25. Farwig, R., Kračmar, S., Krbec, M., Nečasová, Š., Penel, P.: Weighted \(L^2\) and \(L^q\) approaches to fluid flow past a rotating body. In: Mucha, P.B. (ed.) Nonlocal and Abstract Parabolic Equations and their Applications. Based on the Conference, Bedlewo, Poland, 2007. Warsaw, vol. 86, pp. 59–81. Banach Center Publications (2009)

  26. Farwig, R., Krbec, M., Nečasová, Š.: A weighted \(L^q\)-approach to Oseen flow around a rotating body. Math. Methods Appl. Sci. 31, 551–574 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Fraenkel, L.E.: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Galdi, G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems. Springer, Berlin (2011)

    MATH  Google Scholar 

  30. Galdi, G.P., Kyed, M.: Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable. Arch. Ration. Mech. Anal. 200, 21–58 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Galdi, G.P., Kyed, M.: A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: strong solutions. Proc. Am. Math. Soc. 141, 573–583 (2013)

    MATH  Google Scholar 

  32. Galdi, G.P., Kyed, M.: A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: weak solutions. Proc. Am. Math. Soc. 141, 1313–1322 (2013)

    MATH  Google Scholar 

  33. Galdi, G.P., Silvestre, A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184, 371–400 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Galdi, G.P., Simader, ChG: Existence, uniqueness and \(L^q\)-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)

    MATH  Google Scholar 

  35. Galdi, G.P., Simader, G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. CLXVI I, 147–163 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Hishida, T.: \(L^q\) estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Jpn. 58, 743–767 (2006)

    MATH  Google Scholar 

  37. Hunt, R., Wheeden, R.L.: On the boundary value of harmonic functions. Trans. Am. Math. Soc. 132, 307–322 (1968)

    MathSciNet  MATH  Google Scholar 

  38. Jerison, D.S., Kenig, C.E.: An identity with applications to harmonic measure. Bull. Am. Math. Soc. 2, 447–451 (1980)

    MathSciNet  MATH  Google Scholar 

  39. Kenig, C.E.: Weighted \(H^p\) spaces on Lipschitz domains. Am. J. Math. 102, 129–163 (1980)

    MATH  Google Scholar 

  40. Kenig, C.E.: Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains. Seminaire Goulaovic - Meyer - Schwartz 1983–1984. Équat. dériv. part., Exposé 21, 1–12 (1984)

    MATH  Google Scholar 

  41. Kenig, C.E.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. American Mathematical Society (1994)

  42. Kilty, J.: The \(L^p\) Dirichlet problem for the Stokes system on Lipschitz domain. Indiana Univ. Math. J. 58, 1219–1234 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Kohr, M.: Boundary value problems for a compressible Stokes system in bounded domains in \(R^n\). J. Comput. Appl. Math. 201, 128–145 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Kohr, M.: The Dirichlet problems for the Stokes resolvent equations in bounded and exterior domains in \(R^n\). Math. Nachr. 280, 534–559 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Kohr, M., de Cristoforis, M.L., Wendland, W.L.: Boundary value problems of Robin type for the Brinkman and Darcy–Forchheimer–Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595–630 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Kohr, M., Pintea, C., Wendland, W.L.: Brinkman-type operators on Riemannian manifolds: Transmission problems in Lipschitz and \(C^1\) domains. Potential Anal. 32, 229–273 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Kohr, M., Pintea, C., Wendland, W.L.: Stokes-Brinkman transmission problems on Lipschitz and \(C^1\) domains in Riemannian manifolds. Commun. Pure Appl. Anal. 9, 493–537 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Kohr, M., Pintea, C., Wendland, W.L.: Dirichlet-transmission problems for general Brinkman operators in Lipschitz and \(C^1\) domains in Riemannian manifolds. Discrete Contin. Dyn. Syst. 15, 999–1018 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Kohr, M., Pintea, C., Wendland, W.L.: Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds. Z. Angew. Math. Mech. 93, 446–458 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Kohr, M., Pintea, C., Wendland, W.L.: Potential analysis for pseudodifferential matrix operators in Lipschitz domains on Riemannian manifolds. Appl. Brinkman Oper. Math. 54, 156–173 (2012)

    MATH  Google Scholar 

  52. Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press (2004)

  53. Kohr, M., Raja Sekhar, G.P., Ului, E.M., Wendland, W.L.: Two-dimensional Stokes–Brinkmann cell model: a boundary integral formulation. Appl. Anal. 91, 251–275 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Kohr, M., Raja Sekhar, G.P., Wendland, W.L.: Boundary integral equations for a three-dimensional Stokes–Brinkman cell model. Math. Models Methods Appl. Sci. 18, 2055–2085 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Kohr, M., Raja Sekhar, G.P., Wendland, W.L.: Boundary integral method for Stokes flow past a porous body. Math. Methods Appl. Sci. 31, 1065–1097 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Kohr, M., Wendland, W.L.: Boundary integral equations for a three-dimensional Brinkmann flow problem. Math. Nachr. 282, 1305–1333 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Kohr, M., Wendland, W.L., Raja Sekhar, G.P.: Boundary integral equations for two-dimensional low Reynolds number flow past a porous body. Math. Methods Appl. Sci. 32, 922–962 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Kozlov, V.A., Maz’ya, V.G.: On power-logarithmic solutions to the Dirichlet problem for the Stokes system in a Dirichlet angle. Math. Methods Appl. Sci. 20, 315–346 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Kračmar, S., Medková, D., Nečasová, Š., Varnhorn, W.: A maximum modulus theorem for the Oseen problem. Ann. Mat. Pura Appl. 192, 1059–1076 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Krasnosel’skii, M.A., Zabreiko, P.P., Pustyl’nik, E.I., Sobolevskii, P.E.: Integral Operators in Spaces of Summable Functions. Nauka, Izdat (1966). (Russian)

    MATH  Google Scholar 

  61. Krutitskii, P.A.: On properties of some integrals related to potentials for Stokes equations. Q. Appl. Math. LXV, 549–569 (2007)

    MathSciNet  MATH  Google Scholar 

  62. Kyed, M.: On a mapping property of the Oseen operator with rotation. Discrete Contin. Dyn. Syst. 6, 1315–1322 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Kyed, M.: Asymptotic profile of a linearized Navier–Stokes flow past a rotating body. Q. Appl. Math. 71, 489–500 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Kyed, M.: On the asymptotic structure of a Navier–Stokes flow past a rotating body. J. Math. Soc. Jpn. 66, 1–16 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Ladyzenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, London (1969)

    Google Scholar 

  66. Lepsky, O.: On Laplace and Stokes potentials. Math. Methods Appl. Sci. 21, 227–249 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Lewis, J.E.: Layer potentials for elastostatics and hydrostatics in curvilinear domains. Trans. Am. Math. Soc. 320, 53–76 (1990)

    MathSciNet  MATH  Google Scholar 

  68. Lions, J.L., Magenes, E.: Problèmes Aux Limites Non Homogènes et Applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  69. Lubuma, M.S.: Classical solutions of two dimensional Stokes problems on non smooth domains I: the Radon integral operators. Math. Methods Appl. Sci. 16, 643–664 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Maremonti, P.: On the Stokes equations: the maximum modulus theorem. Math. Models Methods Appl. Sci. 10, 1047–1072 (2000)

    MathSciNet  MATH  Google Scholar 

  71. Maremonti, P., Russo, R.: On the maximum modulus theorem for the Stokes system. Ann. Sci. Norm. Super. Pisa XX I, 629–643 (1994)

    MathSciNet  MATH  Google Scholar 

  72. Maremonti, P., Russo, R., Starita, G.: On the Stokes equations: the boundary value problem. In: Maremonti, P. (ed.) Advances in Fluid Dynamics. Dipartimento di Matematica Seconda Università di Napoli, pp. 69–140 (1999)

  73. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to \(VMO^*\). Funct. Anal. Appl. 43, 217–235 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Maz’ya, V.G., Poborchi, S.V.: Differentiable Functions on Bad Domains. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  75. Maz’ya, V., Rossmann, J.: Pointwise estimates for Green’s kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone. Math. Nachr. 278, 1766–1810 (2005)

    MathSciNet  MATH  Google Scholar 

  76. Maz’ya, V., Rossmann, J.: \(L_p\) estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)

    MathSciNet  MATH  Google Scholar 

  77. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  78. Medková, D.: Regularity of solutions of the Neumann problem for the Laplace equation. Le Matematiche LX I, 287–300 (2006)

    MathSciNet  MATH  Google Scholar 

  79. Medková, D.: Integral representation of a solution of the Neumann problem for the Stokes system. Numer. Algorithms 54, 459–484 (2010)

    MathSciNet  MATH  Google Scholar 

  80. Medková, D.: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116, 281–304 (2011)

    MathSciNet  MATH  Google Scholar 

  81. Medková, D.: The Neumann problem for the planar Stokes system. Ann. Univ. Ferrara 58, 307–329 (2012)

    MathSciNet  MATH  Google Scholar 

  82. Medková, D.: Integral equation method for the first and second problems of the Stokes system. Potential Anal. 39, 389–409 (2013)

    MathSciNet  MATH  Google Scholar 

  83. Medková, D.: Transmission problem for the Brinkman system. Complex Var. Elliptic. Equ. 59, 1664–1678 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Medková, D.: \(L^q\)-solution of the Robin problem for the Oseen system. Acta Appl. Math. 142, 61–79 (2016)

    MathSciNet  MATH  Google Scholar 

  85. Medková, D.: Bounded solutions of the Dirichlet problem for the Stokes resolvent system. Complex Var. Elliptic. Equ. 61, 1689–1715 (2016)

    MathSciNet  MATH  Google Scholar 

  86. Mitrea, D., Mitrea, M., Yan, L.: Boundary value problems for the Laplacian in convex and semiconvex domains. J. Funct. Anal. 258, 2507–2585 (2010)

    MathSciNet  MATH  Google Scholar 

  87. Mitrea, I.: Spectral radius properties for layer potentials associated with the elastic and hydrostatics equations in nonsmooth domains. J. Fourier Anal. Appl. 5, 385–408 (1999)

    MathSciNet  MATH  Google Scholar 

  88. Mitrea, I.: On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons. J. Fourier Anal. Appl. 8, 443–487 (2002)

    MathSciNet  MATH  Google Scholar 

  89. Mitrea, M., Monniaux, S., Wright, M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. 176, 409–457 (2011)

    MathSciNet  MATH  Google Scholar 

  90. Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    MathSciNet  MATH  Google Scholar 

  91. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: the case of Dini metric tensors. Trans. Am. Math. Soc. 355, 1961–1985 (2002)

    MathSciNet  MATH  Google Scholar 

  92. Mitrea, M., Wright, M.: Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains. Astérisque (2012)

  93. Müller, V.: Spectral Theorey of Linear Operators and Spectral Systems in Banach Algebras. Birkhäuser, Basel (2007)

    Google Scholar 

  94. Pokorný, M.: Comportement asymptotique des solutions de quelques equations aux derivees partielles decrivant l’ecoulement de fluides dans les domaines non-bornes. These de doctorat. Universite de Toulon et Du Var, Universite Charles de Prague (1999)

  95. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  96. Russo, A., Tartaglione, A.: On the Oseen and Navier–Stokes systems with a slip boundary condition. Appl. Math. Lett. 22, 674–678 (2009)

    MathSciNet  MATH  Google Scholar 

  97. Russo, A., Tartaglione, A.: On the Navier problem for the stationary Navier–Stokes equations. J. Differ. Equ. 251, 2387–2408 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  98. Shen, Z.: A note on the Dirichlet problem for the Stokes system in Lipschitz domain. Proc. Am. Math. Soc. 123, 801–811 (1995)

    MathSciNet  MATH  Google Scholar 

  99. Shen, Z.: Resolvent estimates in \(L^p\) for the Stokes operator in Lipschitz domains. Arch. Ration. Mech. Anal. 205, 395–424 (2012)

    MathSciNet  MATH  Google Scholar 

  100. Silvestre, A.L.: On the existence of steady flows of a Navier–Stokes liquid around a moving rigid body. Math. Methods Appl. Sci. 27, 1399–1409 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  101. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilatory Integrals. Princeton Univ. Press, Princeton (1993)

    Google Scholar 

  102. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  103. Thomann, E.A., Guenther, R.B.: The fundamental solution of the linearized Navier–Stokes equations for spinning bodies in three spatial dimensions-time dependent case. J. Math. Fluid Mech. 8, 77–98 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  104. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften (1978)

  105. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  106. Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds: characteristic functions as pointwise multipliers. Rev. Mat. Comput. 15, 475–524 (2002)

    MathSciNet  MATH  Google Scholar 

  107. Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  108. Varnhorn, W.: The Stokes equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  109. Varnhorn, W.: The boundary value problems of the Stokes resolvent equations in \(n\) dimensions. Math. Nachr. 269–270, 210–230 (2004)

    MathSciNet  MATH  Google Scholar 

  110. Varnhorn, W.: Boundary integral equations and maximum modulus estimates for the Stokes system. Proc. Appl. Math. Mech. 7, 1042603–1042604 (2007)

    Google Scholar 

  111. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    MathSciNet  MATH  Google Scholar 

  112. Wei, W., Zhang, Z.: \(L^p\) resolvent estimates for constant coefficient elliptic systems on Lipschitz domains. J. Funct. Anal. 267, 3262–3293 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Medková.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Funding

This study was funded by Grant Agency of Czech Republic (GA17-01747S).

Additional information

Communicated by G.P. Galdi

Supported by RVO: 67985840 and Grant GAČR No. 17-01747S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medková, D. \(L^q\)-Solution of the Robin Problem for the Stokes System with Coriolis Force. J. Math. Fluid Mech. 20, 1589–1616 (2018). https://doi.org/10.1007/s00021-018-0380-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0380-7

Keywords

Mathematics Subject Classification

Navigation