Skip to main content
Log in

Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The atomic coordinates and structure factors of the Ricistatin–cathepsin V complex has been deposited in the Protein Data Bank with accession code 7PK4, and the raw X-ray diffraction images has been deposited in the SBGrid Data Bank with accession code 1045.

References

  1. Stubbs MT, Laber B, Bode W et al (1990) The refined 2.4 Å X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 9:1939–1947. https://doi.org/10.1002/J.1460-2075.1990.TB08321.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alvarez-Fernandez M, Barrett AJ, Gerhartz B et al (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 274:19195–19203. https://doi.org/10.1074/JBC.274.27.19195

    Article  CAS  PubMed  Google Scholar 

  3. Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Front Biosci 13:5406–5420. https://doi.org/10.2741/3089

    Article  CAS  PubMed  Google Scholar 

  4. Kordiš D, Turk V (2009) Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol 9:1–22. https://doi.org/10.1186/1471-2148-9-266/FIGURES/9

    Article  Google Scholar 

  5. Stoka V, Turk V, Turk B (2016) Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 32:22–37. https://doi.org/10.1016/J.ARR.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Magister Š, Kos J (2013) Cystatins in immune system. J Cancer 4:45–56. https://doi.org/10.7150/JCA.5044

    Article  CAS  PubMed  Google Scholar 

  7. Zavasnik-Bergant T (2008) Cystatin protease inhibitors and immune functions. Front Biosci 13:4625–4637. https://doi.org/10.2741/3028

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz A, Valdés JJ, Kotsyfakis M (2012) The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis 3:117–127. https://doi.org/10.1016/j.ttbdis.2012.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chmelař J, Kotál J, Langhansová H, Kotsyfakis M (2017) Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front Cell Infect Microbiol 7:216. https://doi.org/10.3389/FCIMB.2017.00216/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parizi LF, Sabadin GA, Alzugaray MF et al (2015) Rhipicephalus microplus and ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasit Vectors 8:1–11. https://doi.org/10.1186/S13071-015-0743-3/FIGURES/6

    Article  CAS  Google Scholar 

  11. Zavašnik-Bergant T, Turk B (2006) Cysteine cathepsins in the immune response. Tissue Antigens 67:349–355. https://doi.org/10.1111/J.1399-0039.2006.00585.X

    Article  PubMed  Google Scholar 

  12. Kotsyfakis M, Sá-Nunes A, Francischetti IMB et al (2006) Antiinflammatory and immunosuppressive activity of Sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem 281:26298–26307. https://doi.org/10.1074/jbc.M513010200

    Article  CAS  PubMed  Google Scholar 

  13. Kotsyfakis M, Karim S, Andersen JF et al (2007) Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem 282:29256–29263. https://doi.org/10.1074/jbc.M703143200

    Article  CAS  PubMed  Google Scholar 

  14. Kotál J, Stergiou N, Buša M et al (2019) The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol Life Sci 76:2003–2013. https://doi.org/10.1007/s00018-019-03034-3

    Article  CAS  PubMed  Google Scholar 

  15. Buša M, Matoušková Z, Bartošová-Sojková P et al (2023) An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily. J Biol Chem 299:102970. https://doi.org/10.1016/j.jbc.2023.102970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotsyfakis M, Horka H, Salat J, Andersen JF (2010) The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol Microbiol 77:456–470. https://doi.org/10.1111/j.1365-2958.2010.07220.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karim S, Miller NJ, Valenzuela J et al (2005) RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochem Biophys Res Commun 334:1336–1342. https://doi.org/10.1016/J.BBRC.2005.07.036

    Article  CAS  PubMed  Google Scholar 

  18. Salát J, Paesen GC, Řezáčová P et al (2010) Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem J 429:103–112. https://doi.org/10.1042/BJ20100280

    Article  CAS  PubMed  Google Scholar 

  19. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. https://doi.org/10.1093/BIOINFORMATICS/8.3.275

    Article  CAS  PubMed  Google Scholar 

  20. Hall T (1999) BioEdit a user-friendly biological sequence alignment editor and analysis Program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the Bootstrap. Evolution (N Y) 39:783. https://doi.org/10.2307/2408678

    Article  Google Scholar 

  22. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/MOLBEV/MSY096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwarz A, von Reumont BM, Erhart J et al (2013) De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J 27:4745–4756. https://doi.org/10.1096/fj.13-232140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang B, Shi GP, Yao PM et al (1998) Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J Biol Chem 273:32000–32008. https://doi.org/10.1074/JBC.273.48.32000

    Article  CAS  PubMed  Google Scholar 

  25. Brömme D, Li Z, Barnes M, Mehler E (1999) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385. https://doi.org/10.1021/BI982175F

    Article  CAS  PubMed  Google Scholar 

  26. Mueller U, Darowski N, Fuchs MR et al (2012) Facilities for macromolecular crystallography at the Helmholtz–Zentrum Berlin. J Synchrotron Radiat 19:442. https://doi.org/10.1107/S0909049512006395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144. https://doi.org/10.1107/S0907444909047374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22–25. https://doi.org/10.1107/S0907444909042589

    Article  CAS  PubMed  Google Scholar 

  29. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242. https://doi.org/10.1107/S0907444910045749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murshudov GN, Skubák P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367. https://doi.org/10.1107/S0907444911001314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. https://doi.org/10.1107/S0907444904019158

    Article  CAS  PubMed  Google Scholar 

  32. Williams CJ, Headd JJ, Moriarty NW et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315. https://doi.org/10.1002/PRO.3330

    Article  CAS  PubMed  Google Scholar 

  33. Liebschner D, Afonine PV, Baker ML et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877. https://doi.org/10.1107/S2059798319011471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. https://doi.org/10.1016/J.JMB.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  35. Adasme MF, Linnemann KL, Bolz SN et al (2021) PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49:W530–W534. https://doi.org/10.1093/NAR/GKAB294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chlastáková A, Kotál J, Beránková Z et al (2021) Iripin-3, a new salivary protein isolated from Ixodes ricinus ticks, displays immunomodulatory and anti-hemostatic properties in vitro. Front Immunol. https://doi.org/10.3389/FIMMU.2021.626200

    Article  PubMed  PubMed Central  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ÄÄCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  38. Adami C, Brunda MJ, Palleroni AV (1993) In vivo immortalization of murine peritoneal macrophages: a new rapid and efficient method for obtaining macrophage cell lines. J Leukoc Biol 53:475–478. https://doi.org/10.1002/JLB.53.4.475

    Article  CAS  PubMed  Google Scholar 

  39. Abrahamson M (1994) Cystatins. Methods Enzymol 244:685–700

    Article  CAS  PubMed  Google Scholar 

  40. Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    Article  CAS  PubMed  Google Scholar 

  41. Chen JM, Dando PM, Rawlings ND et al (1997) Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem 272:8090–8098. https://doi.org/10.1074/JBC.272.12.8090

    Article  CAS  PubMed  Google Scholar 

  42. Dolenc I, Turk B, Kos J, Turk V (1996) Interaction of human cathepsin C with chicken cystatin. FEBS Lett 392:277–280. https://doi.org/10.1016/0014-5793(96)00828-9

    Article  CAS  PubMed  Google Scholar 

  43. Abrahamson M, Barrett AJ, Salvesen G, Grubb A (1986) Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J Biol Chem 261:11282–11289

    Article  CAS  PubMed  Google Scholar 

  44. Kotál J, Buša M, Urbanová V et al (2021) Mialostatin, a novel midgut cystatin from Ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int J Mol Sci. https://doi.org/10.3390/IJMS22105371

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kotsyfakis M, Anderson JM, Andersen JF et al (2008) Cutting edge: immunity against a “Silent” salivary antigen of the lyme vector Ixodes scapularis impairs its ability to feed. J Immunol 181:5209–5212. https://doi.org/10.4049/jimmunol.181.8.5209

    Article  CAS  PubMed  Google Scholar 

  46. Sa-Nunes A, Bafica A, Antonelli LR et al (2009) The Immunomodulatory action of Sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol 182:7422–7429. https://doi.org/10.4049/jimmunol.0900075

    Article  CAS  PubMed  Google Scholar 

  47. Wang SX, Pandey KC, Somoza JR et al (2006) Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc Natl Acad Sci USA 103:11503–11508. https://doi.org/10.1073/PNAS.0600489103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chu MH, Liu KL, Wu HY et al (2011) Crystal structure of tarocystatin–papain complex: implications for the inhibition property of group-2 phytocystatins. Planta 234:243. https://doi.org/10.1007/S00425-011-1398-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pidugu LS, Maity K, Ramaswamy K et al (2009) Analysis of proteins with the “hot dog” fold: prediction of function and identification of catalytic residues of hypothetical proteins. BMC Struct Biol 9:1–16. https://doi.org/10.1186/1472-6807-9-37/FIGURES/11

    Article  Google Scholar 

  50. Renko M, Pogan U, Majera D, Turk D (2010) Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. FEBS J 277:4338–4345. https://doi.org/10.1111/J.1742-4658.2010.07824.X

    Article  CAS  PubMed  Google Scholar 

  51. Somoza JR, Zhan H, Bowman KK et al (2000) Crystal structure of human cathepsin V. Biochemistry 39:12543–12551. https://doi.org/10.1021/BI000951P

    Article  CAS  PubMed  Google Scholar 

  52. Renko M, Sabotič J, Mihelič M et al (2010) Versatile loops in mycocypins inhibit three protease families. J Biol Chem 285:308. https://doi.org/10.1074/JBC.M109.043331

    Article  CAS  PubMed  Google Scholar 

  53. Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta (BBA) Proteins Proteom 1824:68–88. https://doi.org/10.1016/j.bbapap.2011.10.002

    Article  CAS  Google Scholar 

  54. Nandy SK, Seal A (2016) Structural dynamics investigation of human family 1 & 2 Cystatin–Cathepsin L1 interaction: a comparison of binding modes. PLoS One 11:e0164970. https://doi.org/10.1371/JOURNAL.PONE.0164970

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gunčar G, Podobnik M, Pungerčar J et al (1998) Crystal structure of porcine cathepsin H determined at 2.1 Å resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 6:51–61. https://doi.org/10.1016/S0969-2126(98)00007-0

    Article  PubMed  Google Scholar 

  56. Jenko S, Dolenc I, Gunčar G et al (2003) Crystal structure of Stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the active sites of endo- and exopeptidases. J Mol Biol 326:875–885. https://doi.org/10.1016/S0022-2836(02)01432-8

    Article  CAS  PubMed  Google Scholar 

  57. Jílková A, Horn M, Řezáčová P et al (2014) Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure 22:1786–1798. https://doi.org/10.1016/J.STR.2014.09.015

    Article  PubMed  Google Scholar 

  58. Musil D, Zucic D, Turk D et al (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10:2321. https://doi.org/10.1002/J.1460-2075.1991.TB07771.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Francischetti IMB, Sa-Nunes A, Mans BJ et al (2009) The role of saliva in tick feeding. Front Biosci (Landmark Ed) 14:2051–2088

    Article  CAS  PubMed  Google Scholar 

  60. Aounallah H, Bensaoud C, M’ghirbi Y et al (2020) Tick salivary compounds for targeted immunomodulatory therapy. Front Immunol 11:2440. https://doi.org/10.3389/FIMMU.2020.583845/BIBTEX

    Article  Google Scholar 

  61. Wikel S (2021) Immunobiology of tick-host-pathogen interactions. Parasite Immunol 43:e12818. https://doi.org/10.1111/PIM.12818

    Article  PubMed  Google Scholar 

  62. Wikel SK (2018) Tick-host-pathogen systems immunobiology: an interactive trio. Front Biosci Landmark 23:265–283. https://doi.org/10.2741/4590

    Article  CAS  Google Scholar 

  63. Vray B, Hartmann S, Hoebeke J (2002) Immunomodulatory properties of cystatins. Cell Mol Life Sci 59:1503–1512. https://doi.org/10.1007/S00018-002-8525-4

    Article  CAS  PubMed  Google Scholar 

  64. Conus S, Simon HU (2010) Cathepsins and their involvement in immune responses. Swiss Med Wkly 140:w13042–w13042. https://doi.org/10.4414/SMW.2010.13042

    Article  PubMed  Google Scholar 

  65. Adkison AM, Raptis SZ, Kelley DG, Pham CTN (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Investig 109:363–371. https://doi.org/10.1172/JCI13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kýcková K, Kopecký J (2006) Effect of tick saliva on mechanisms of innate immune response against Borrelia afzelii. J Med Entomol 43:1208–1214

    Article  PubMed  Google Scholar 

  67. Sun T, Wang F, Pan W et al (2018) An immunosuppressive tick salivary gland protein DsCystatin interferes with toll-like receptor signaling by downregulating TRAF6. Front Immunol. https://doi.org/10.3389/fimmu.2018.01245

    Article  PubMed  PubMed Central  Google Scholar 

  68. Horka H, Staudt V, Klein M et al (2012) The tick salivary protein sialostatin L inhibits the Th9-derived production of the asthma-promoting cytokine interleukin-9 and is effective in the prevention of experimental asthma. J Immunol 188:2669. https://doi.org/10.4049/JIMMUNOL.1100529

    Article  CAS  PubMed  Google Scholar 

  69. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252:104–115. https://doi.org/10.1111/IMR.12028

    Article  PubMed  PubMed Central  Google Scholar 

  70. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4 +T cells: differentiation and functions. Clin Dev Immunol. https://doi.org/10.1155/2012/925135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

MK received funding received from the Grant Agency of the Czech Republic (Grant 19-38207247S) and ERD Funds, project CePaVip OPVVV (No. 384 CZ.02.1.01/0.0/0.0/16_019/0000759). The project was further supported by the Grant Agency of the Czech Republic (Grant 19-14704Y to JC). MM and MB were supported by ERD Fund project ChemBioDrug (CZ.02.1.01/0.0/0.0/16_019/0000729), by Grant LTAUSA19109 from the Ministry of Education of the Czech Republic, and by institutional project RVO 61388963.

Author information

Authors and Affiliations

Authors

Contributions

LAM, MB, AC, JK, ZB, MAJ, and NS performed experiments and analyzed data; LAM, MB, AC, and MK designed experiments; MM, ES, JC, and MK supervised the study; LAM, MB, MM, JC, and MK evaluated the data and revised the manuscript for publication. All authors contributed to the manuscript and approved the final version of the manuscript.

Corresponding authors

Correspondence to Michael Mareš or Michail Kotsyfakis.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics statement

All animal experiments were carried out in accordance with the Animal Protection Law of the Czech Republic No. 246/1992 Sb., ethics approval No. 34/2018, and the responsible committee of the Institute of Parasitology, Biology Centre of the Czech Academy of Sciences and the Ministry of Education, Youth and Sports of the Czech Republic approved the protocol (No. 19085/2015-3).

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication, the study does not involve patients, human subjects or tissues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PSE 1585 kb)

Supplementary file2 (DOCX 2785 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L.A., Buša, M., Chlastáková, A. et al. Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host. Cell. Mol. Life Sci. 80, 339 (2023). https://doi.org/10.1007/s00018-023-04993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04993-4

Keywords

Navigation