Skip to main content
Log in

Formation of mullite and mullite-corundum composites from kaolin using spark plasma sintering

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Mullite, an excellent and versatile material, was synthesized, alone and in a composite with alumina, from natural kaolin—a primary product of a kaolin clay quarry. Kaolin powder for the mullitization process was inserted into a spark plasma sintering (SPS) apparatus in the form of raw kaolin, and in another experiment in the form of calcinated kaolin freed from bound water. Thermal properties, microstructure and phase composition were studied on the obtained samples. It was found out that the effect of calcination was in dehydration of kaolinite and amorphization of its phase composition. Thermal properties of the dehydrated and as-received kaolinite-based material were very similar. Materials with a perfect thermal insulation character were received. Dehydrated and as-received powders were mixed with alumina powder (corrundum phase) and fired by SPS. Mechanical properties–Vickers microhardness as well as parameters based on instrumented indentation were enhanced in the composite because of alumina content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bai, J.: Fabrication and properties of porous mullite ceramics from calcined carbonaceous kaolin and alpha-Al2O3. Ceram. Int. 36, 673–678 (2010)

    Article  CAS  Google Scholar 

  2. Byung-Koog, J., Fan-Jie, F., Keiko, S., et al.: Corrosion behavior of volcanic ash on sintered mullite for environmental barrier coatings. Ceram. Int. 43, 1880–1886 (2017)

    Article  Google Scholar 

  3. Shackelford JF and Doremus RH (eds.) Ceramic and Glass Materials: Structure, Properties and Processing, Springer (2008). https://doi.org/10.1007/978-0-387-73362-3

  4. Chen, C.Y., Lan, G.S., Tuan, W.H.: Microstructural evolution of mullite during the sintering of kaolin powder compacts. J. Eur. Ceram. Soc. 20, 2519–2525 (2000)

    Article  CAS  Google Scholar 

  5. Fiala J, Nonhydrolytic Synthesis of Alumosilicates, Master’s Thesis, Masaryk University, Faculty of Natural Sciences, Inst. of Chemistry, Brno 2009 (in Czech)

  6. Askay, I.A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 74, 2343–2358 (1991)

    Article  Google Scholar 

  7. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite - a review. J. Eur. Ceram. Soc. 28, 329–344 (2008)

    Article  CAS  Google Scholar 

  8. Mah, T.I., Mazdiyasni, K.S.: Mechanical properties of mullite. J. Am. Ceram. Soc. 66, 699–703 (1983)

    Article  CAS  Google Scholar 

  9. Sadika, C., Amranib, I., Albizanea, A.: Recent advances in silica-alumina refractory: a review. J. Asian Ceram. Soc. 2, 83–96 (2014)

    Article  Google Scholar 

  10. Tummala, R.R.: Ceramic and glass-ceramic packaging in the 1990s. J. Am. Ceram. Soc. 74, 895–908 (1991)

    Article  CAS  Google Scholar 

  11. Kenawy, S.H., Awaad, M., Awad, H.: In-situ mullite–zirconia composites from kaolin. Am. Ceram. Soc. Bull. 85(11), 9401–9406 (2014)

    Google Scholar 

  12. Nsiah-Baafi, E., Andrews, A.: Fabrication of mullite from lithomargic clay via spark plasma sintering. Ceram. Int. 43, 14277–14280 (2017)

    Article  CAS  Google Scholar 

  13. Yung-Feng, C., Wang, M.C., Hon, M.H.: Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004)

    Article  Google Scholar 

  14. Castelein, O., Soulestin, B., Bonnet, J.P., et al.: The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram. Int. 27, 517–522 (2001)

    Article  CAS  Google Scholar 

  15. Okada, K., Otsuka, N., Ossaka, J.: Characterization of spinel phase formed in the kaolin-mullite thermal sequence. J. Am. Ceram. Soc. 69, 251–253 (2003)

    Google Scholar 

  16. Traore, K., Kabre, T.S., Blanchart, P.: Gehlenite and anorthite crystallization from kaolinite and calcite mix. Ceram. Int. 29, 377–383 (2003)

    Article  CAS  Google Scholar 

  17. Pask, J.A., Tomsia, A.P.: Formation of mullite from sol–gel mixtures and kaolinite. J. Am. Ceram. Soc. 74, 2367–2373 (1991)

    Article  CAS  Google Scholar 

  18. Kim, B.M., Cho, Y.K., Yoon, S.Y., et al.: Mullite whiskers derived from kaolin. Ceram. Int. 35, 579–583 (2009)

    Article  CAS  Google Scholar 

  19. Chen, C.Y., Lan, G.S., Tuan, W.H.: Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 20, 2519–2525 (2000)

    Article  CAS  Google Scholar 

  20. Esharghawi, A., Penot, C., Nardou, F.: Contribution to porous mullite synthesis from clays by adding Al and Mg powders. J. Eur. Ceram. Soc. 29, 31–38 (2008)

    Article  Google Scholar 

  21. Ebadzadeh, T.: Formation of mullite from precursor powders: sintering, microstructure and mechanical properties. Mat. Sci. Eng. A. 355, 56–61 (2003)

    Article  Google Scholar 

  22. Kong, L.B., Chen, Y.Z., Zhang, T.S., et al.: Effect of alkaline-earth oxides on phase formation and morphology development of mullite ceramics. Ceram. Int. 30, 1319–1323 (2004)

    Article  CAS  Google Scholar 

  23. Ghahremanin, D., Ebadzadeh, T., Maghsodipour, A.: Spark plasma sintering of mullite: relation between microstructure, properties and spark plasma sintering (SPS) parameters. Ceram. Int. 41, 6409–6416 (2015)

    Article  Google Scholar 

  24. Stollberg, D.W., Hampikian, J.M., Riester, L., et al.: Nanoindentation measurements of combustion CVD Al2O3 and YSZ Flms. Mater. Eng. A359, 112–118 (2003)

    Article  CAS  Google Scholar 

  25. De Aza, A.H., Turrillas, X., Rodriguez, M.A., et al.: Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. J. Eur. Ceram. Soc. 34(4), 1409–1421 (2014)

    Article  Google Scholar 

  26. Ptáček, P., Frajkorová, F., Šoukal, F., et al.: Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 264, 439–445 (2014)

    Article  Google Scholar 

  27. Mendonca, A.M.R., Ferreira, J.M.F., Miranda Salvado, I.M.: Mullite-alumina composites prepared by sol-gel. J. Sol-Gel Sci. Technol. 13, 201–205 (1998)

    Article  CAS  Google Scholar 

  28. Nevrla B, Ctibor P, Koudelkova V, et al. Plasma Spraying of Natural Kaolinite and Metakaolinite, accepted by Boletín de la Sociedad Española de Cerámica y Vidrio. https://doi.org/10.1016/j.bsecv.2020.03.0050366-3175/

  29. Botero, C.A., Jimenez-Piqué, E., Kulkarni, T., et al.: Cross-sectional nanoindentation and nanoscratch of compositionally graded mullite Flms. Surf. Coat. Technol. 206, 1927–1931 (2011)

    Article  CAS  Google Scholar 

  30. Osendi, M.I., Baudín, C.: Mechanical properties of mullite materials. J. Eur. Ceram. Soc. 16, 217–224 (1996)

  31. Sedmale, G., Sperberga, I., Zilinska, N., et al.: Spark plasma sintering (SPS) to the mullite-zirconia ceramics development. Mater. Sci. 21(1), 96–99 (2015)

    Google Scholar 

  32. Tamari, N., Kondoh, I., Tanaka, T., et al.: Mechanical properties of alumina-mullite whisker composites. J. Ceram. Soc. Jpn. 101(6), 721–724 (1993)

    Article  CAS  Google Scholar 

  33. Živcová, Z., Gregorová, E., Pabst, W., et al.: Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 347–353 (2009)

    Article  Google Scholar 

  34. Hofmeister, A.M.: Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature. Phys. Chem. Miner. 41, 361–371 (2014)

    Article  CAS  Google Scholar 

  35. Manga, M., Jaenloz, R.: Thermal conductivity of corundum and periclase and implications for the lower mantle. J. Geophys. Res. 102(B2), 2999–3008 (1997)

    Article  Google Scholar 

  36. See, A., Hassan, J., Hashim, M., et al.: Thermal diffusivity of kaolinite–mullite ceramic matrix composite with silicon nitride nanoparticle filler. Thermochim. Acta. 593, 76–81 (2014)

    Article  CAS  Google Scholar 

  37. Michot, A., Smith, D.S., Degot, S., et al.: Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment. J. Eur. Ceram. Soc. 28, 2639–2644 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

Petr Haušild acknowledges partial financial support by ERDF under project no. CZ.02.1.01/0.0/0.0/17_048/0007373 “Damage Prediction of Structural Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ctibor.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ctibor, P., Haušild, P., Nevrlá, B. et al. Formation of mullite and mullite-corundum composites from kaolin using spark plasma sintering. J Aust Ceram Soc 57, 651–661 (2021). https://doi.org/10.1007/s41779-021-00571-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00571-8

Keywords

Navigation