Skip to main content
Log in

Heat treatment and mechanics of Moravian Jurassic cherts

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Experimental heat treatment was applied to Moravian (Czech Republic) Jurassic cherts of Olomučany type to find whether it leads to better flaking properties. Indentation tests and other tests were used and compared with the changes in infrared (NIR) spectra which are usually indicative of mechanical changes linked with water loss from the material. The indentation tests provided ambiguous results due to irregular propagation of cracks from indent corners. On the other hand, three-point-load fracturing and resonance tests were usable and indicated that the cherts are best flakeable after heating to 300 °C when fracture toughness is reduced whereas elastic modulus increases. These two changes complement each other: The first causes easier flakeability and the other more stable crack propagation and predictability. The simultaneous formation of fluid inclusions probably contributes to swifter crack propagation. As shown by our sequence statistics analysis, the drop in fracture toughness seems to be a more gradual process, whereas the increase in stiffness at 300 °C is rather sudden. The fact that the Olomučany chert or other fine-grained lithologies were not heat-treated in the prehistory of eastern Central Europe indicates that the improvement by heat treatment was not practised in this area in prehistory, unlike in more westerly regions. This may be due to long-distance imports of other, finer-grained lithologies, a strategy frequented in the region since 40,000 BCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alix P, Pelegrin J, Deloge H (1995) Un débitage original de lamelles par pression au Magdalénien du Rocher-dela-Caille (Loire, France). Paléo 7:187–199

    Article  Google Scholar 

  • Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  Google Scholar 

  • Beauchamp EK, Purdy B (1986) Decrease in fracture toughness of chert by heat-treatment. J Mater Sci 21:1963–1966. https://doi.org/10.1007/BF00547934

    Article  Google Scholar 

  • Binder D (1984) Systèmes de débitage laminair pear pression : exemples chasséens provençaux. In: Tixier J (ed) Economie du débitage laminaire (Préhistoire de la Pierre Taillée 2). CREP, Paris, pp 71–94

    Google Scholar 

  • Biró K (1991) Bell-beaker culture lithic implements from Hungary. Acta Archael Carpath 30:87–96

    Google Scholar 

  • Bluhm JI (1975) Slice synthesis of a three-dimensional work-of-fracture specimen. Eng Fract Mech 7:593–604. https://doi.org/10.1016/0013-7944(75)90059-4

    Article  Google Scholar 

  • Bordes F (1969) Traitement thermique du silex au Solutréen. Bull Soc Préhist Fr, C R Scéances Mens 66(7):197

    Google Scholar 

  • Bosák P (1978) Rudická plošina v Moravském krasu – část III. Petrografie a diageneze karbonátů a silicitů jurského reliktu u Olomučan. Acta Mus Morav. Sci Nat 63:7–28

    Google Scholar 

  • Chlup Z, Boccaccini D, Leonelli C, Romagnoli M, Boccaccini A (2006) Fracture behaviour of refractory ceramics after cyclic thermal shock. Ceramics-Silikáty 50:245–250

    Google Scholar 

  • Collins MB (1973) Observations on the thermal treatment of chert in the Solutrean of Laugerie Haute. Proc Prehist Soc 39:461–466. https://doi.org/10.1017/S0079497X00011774

    Article  Google Scholar 

  • Collins MB, Fenwick JM (1974) Heat treating of chert: methods of interpretation and their application. Plains Anthropol 19(64):134–145. https://doi.org/10.1080/2052546.1974.11908696

    Article  Google Scholar 

  • Cotterell B, Kamminga J (1987) The formation of flakes. Am Antiq 52:675–708. https://doi.org/10.2307/281378

    Article  Google Scholar 

  • Cotterell B, Kamminga J (1992) Mechanics of pre-industrial technology, Paperback edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Cotterell B, Kamminga J, Dickson FP (1985) The essential mechanics of conchoidal flaking. Int J Fract 29:205–221. https://doi.org/10.1007/BF00125471

    Article  Google Scholar 

  • Crabtree DE, Butler BR (1964) Notes on experiments in flint knapping: 1, Heat-treatment of silica materials. Tebiwa 7:1–6

    Google Scholar 

  • Domański M, Webb JA (1992) Effect of heat-treatment on siliceous rocks used in prehistoric lithic technology. J Archaeol Sci 19:601–614. https://doi.org/10.1016/0305-4403(92)90031-W

    Article  Google Scholar 

  • Domański M, Webb J, Boland J (1994) Mechanical properties of stone artifact materials and the effect of heat-treatment. Archaeom 36:177–208. https://doi.org/10.1111/j.1475-4754.1994.tb00963.x

    Article  Google Scholar 

  • Domański M, Webb J, Glaisher R, Gurba J, Libera J, Zakościelna A (2009) Heat-treatment of Polish flints. J Archaeol Sci 36:1400–1408. https://doi.org/10.1016/j.jas.2009.02.002

    Article  Google Scholar 

  • Dorta Pérez RJ, Hernández Gómez CM, Molina Hernández FJ, Galván Santos B (2010) La alteración térmica en los sílex de los valles alcoyanos (Alicante, España). Una aproximación desde la arqueología experimental en contextos del Paleolítico Medio: El Salt. Recer Mus d'Alcol 19:33–64

    Google Scholar 

  • Eliáš M (1981) Facies and paleogeography of the Jurassic of the Bohemian Massif. J Geol Sci: Geol 35:75–144

    Google Scholar 

  • Eriksen BV (1997) Implications of thermal pretreatment of chert in the German Mesolithic. In: Schild R, Sulgostowska Z (eds) Man and Flint, Proceedings of the VII International Flint Symposium, Warzawa-Ostrowiec Swietokrzyski, September 1995. Institute of Archaeology and Ethnology, Polish Academy of Sciences, pp 325–329

    Google Scholar 

  • Flenniken JJ (1987) The Paleolithic Dyuktai pressure blade technique of Siberia. Arct Anthropol 24(2):117–132

    Google Scholar 

  • Frick JA, Hoyer CT, Herkert K, Floss H (2012) Comparative heating experiments on flint from the Côte Chalonnaise, Burgundy, France. Anthropol (Brno) 50:295–321. 10.15496

  • Geological map 1: 50 000 – indexes (2020) Geological map 1:50 000 - accessories, Geological map 1:50 000, Map sheets ZM50. In: Geo-science maps 1: 50 000 [online]. Praha: Czech Geological Survey [cit. 2020-10-01]. Available at: https://mapy.geology.cz/geocr50/

  • Graetsch H, Flörke OW, Miche G (1985) The nature of water in chalcedony and opal-C from Brazilian agate geodes. Phys Chem Miner 12:300–306. https://doi.org/10.1007/BF00310343

    Article  Google Scholar 

  • Griffiths DR, Bergman CA, Clayton CJ, Ohnuma K, Robins GV, Seeley NJ (1987) Experimental investigation of the heat-treatment of flint. In: Sieveking GG, Newcomer MH (eds) The Human Uses of Flint and Chert. Proceedings of the fourth international flint symposium held at Brighton Polytechnic 10–15 April 1983. Cambridge University Press, Cambridge, pp 43–52

    Google Scholar 

  • Hanckel M (1985) Heat-treatment at Burill Lake and Currarong, New South Wales. Archaeol Ocean 20(3):98–103. https://doi.org/10.1111/arcm.12356

    Article  Google Scholar 

  • Inizan ML (1991) Le débitage par pression : des choix culturels. In: Juan-les-Pins (ed) 25 ans d'études technologiques en Préhistoire (actes des Xle Rencontres Internationales d'Archéologie et d'Histoire d'Antibes, oct. 1990). APDCA, pp. 367-377

  • Inizan ML, Lechevallier M (1985) La Taille du silex par pression à Mehrgarh, Pakistan. La tombe d’un tailler? Paléorient 11(1):111–118

    Article  Google Scholar 

  • Inizan ML, Tixier J (2001) L'émergence des arts du feu : le traitement thermique des roches siliceuses. Paléorient 26(2):23–36

    Article  Google Scholar 

  • Inizan ML, Roche H, Tixier J (1975–1976) Avantages d'un traitment thermique pour la taille des roches silicieuses. Quaternaria 19:1–18

    Google Scholar 

  • Johnson WH, Parsons WH (1944) Thermal expansion of concrete aggregate materials. J Res Natl Bur Stand 32:101–126

    Article  Google Scholar 

  • Kalášek J (red) (1963) Legend to geological map 1:200 000, M-33-XXIX Brno. Prague [in Czech]

  • Keyser JD, Fagan JL (1993) McKean lithic technology at Lightning Springs. Plains Anthropol 38(145):37–51

    Article  Google Scholar 

  • Kozlowski SK (1987) The pre-neolithic base of the early Neolithic stone industries in Europe. In: Kozlowski SK (ed) Kozlowski JK. Chipped Stone Industries of the early farming cultures in Europe, Krakow, pp 9–18

    Google Scholar 

  • Lerner H, Du X, Costopoulos A, Ostoja-Starzewski M (2007) Lithic raw material physical properties and use-wear accrual. J Archaeol Sci 34:711–722. https://doi.org/10.1016/j.jas.2006.07.009

    Article  Google Scholar 

  • Mandeville MD (1973) A consideration of the thermal pretreatment of chert. Plains Anthropol 18(61):177–202

  • Mandeville MD, Flenniken JJ (1974) A comparison of the flaking qualities of Nehawka chert before and after thermal pretreatment. Plains Anthropol 19:146–148

    Article  Google Scholar 

  • mapy.cz [online]. [cit. 2020-06-01]. Available at: https://mapy.cz/zakladni?x=16.6688669&y=49.3291588&z=13&q=Olomu%C4%8Dany&source=muni&id=6199

  • Migal W (2006) The macrolithic flint blades of the Neolithic times in Poland. In: Apel J, Knutsson K (eds) Skilled Production and Social Reproduction. SAU Stone Studies, Uppsala, pp 387–398

    Google Scholar 

  • Milot J, Siebenaller L, Béziat D, Léa V, Schmidt P, Binder D (2017) Formation of fluid inclusions during heat-treatment of Barremo-Bedoulian flint: archaeometric implications. Archaeom 59:417–434. https://doi.org/10.1111/arcm.12256

    Article  Google Scholar 

  • Moník M, Eigner J (2019) Raw material distribution in the Late Palaeolithic of Bohemia and Moravia. In: Eriksen BV, Rensink E, Harris S (eds) The Final Palaeolithic of Northern Eurasia, Proceedings of the Amersfoort, Schleswig and Burgos UISPP Commission Meetings, vol 13. Schriften des Museums für Archäologie Schloss Gottorf, Erzähungsreihe, Ludwig Verlag, Band, pp 247–256

    Google Scholar 

  • Moník M, Hadraba H (2016) Mechanical characterization of raw material quality and its implication for Early Upper Palaeolithic Moravia. Quat Int 425:425–436. https://doi.org/10.1016/j.quaint.2016.08.042

    Article  Google Scholar 

  • Moník M, Nerudová Z, Schnabl P (2017) Experimental heating of Moravian cherts and its implication for Palaeolithic chipped stone assemblages. Archaeom 59(6):1190–1206

    Article  Google Scholar 

  • Moník M, Nerudová Z, Schnabl P, Kdýr Š, Hadraba H (2019) Was there heat-treatment of flints in Moravian Magdalenian? The case of Balcarka Cave. J Archaeol Sci Rep 25:610–620. https://doi.org/10.1016/j.jasrep.2019.05.016

    Article  Google Scholar 

  • Mourre V, Villa P, Henshilwood CS (2010) Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Sci 330:659–662. https://doi.org/10.1126/science.1195550

    Article  Google Scholar 

  • Mraz V, Fisch M, Eren MI, Lovejoy OC, Buchanan B (2019) Thermal engineering of stone increased prehistoric toolmaking skill. Sci Rep 9:14591. https://doi.org/10.1038/s41598-019-51139-3

    Article  Google Scholar 

  • Nadel D (1989) Flint heat-treatment at the beginning of the Neolithic period in the Levant. J Isr Prehist Soc 22:61–67

    Google Scholar 

  • Nerudová Z, Moník M (2019) The Epigravettian of Kůlna Cave? A revision of artefacts. Archeologické rozhledy 71:567–588

    Google Scholar 

  • Olausson DS (1983) Experiments to investigate the effects of heat-treatment on use-wear on flint tools. Proc Prehist Soc 49:1–13. https://doi.org/10.1017/S0079497X00007933

    Article  Google Scholar 

  • Oliva M (2002) Využívání krajiny a zdrojů kamenných surovin v mladém paleolitu českých zemí. Archaeol rozhl 54:555–581

    Google Scholar 

  • Patterson LW (1984) Comments on studies of thermal alteration of Central Pennsylvania Jasper. Am Antiq 49(1):168–173. https://doi.org/10.2307/280524

    Article  Google Scholar 

  • Pavlů I, Zápotocká M (2007) Archeologie pravěkých Čech 3: Neolit. Praha

  • Pelegrin J, Texier JP (2004) Les techniques de tailles de la pierre préhistorique. Dossiers d´archéologie 290:26–33

    Google Scholar 

  • Perlés C (1984) Débitage laminaire de l'obsidienne dans le Néolithique de Franchthi (Grèce): techniques et place dans l'économie de l'industrie lithique. In: Tixier J (ed) Economie du débitage laminaire (Préhistoire de la Pierre Taillée 2). CREP, Paris, pp 129–137

    Google Scholar 

  • Pomiès MP, Menu M, Vignaud C (1999) Red Palaeolithic pigments: natural hematite of heated goethite? Archaeom 41:275–285. https://doi.org/10.1111/j.1475-4754.1999.tb00983.x

    Article  Google Scholar 

  • Přichystal A (2013) Lithic raw materials in prehistoric times. Masaryk University, Brno

    Google Scholar 

  • Purdy BA (1974) Investigations concerning the thermal alteration of silica minerals: an archaeological approach. Tebiwa 17:37–66

    Google Scholar 

  • Purdy B, Brooks HK (1971) Thermal alteration of silica minerals: an archeological approach. Sci 173:322–325. https://doi.org/10.1126/science.173.3994.322

    Article  Google Scholar 

  • Richter D, Alperson-Afil N, Goren-Inbar N (2011) Employing TL methods for the verification of macroscopically determined heat alteration of flint artefacts from Palaeolithic contexts. Archaeom 53:842–857. https://doi.org/10.1111/j.1475-4754.2010.00581.x

    Article  Google Scholar 

  • Rick JW, Chapell S (1983) Thermal alteration of silica materials in technological and functional perspective. Lithic Technol 12(3):69–80

    Article  Google Scholar 

  • Rowney M, White JP (1997) Detecting heat-treatment on silcrete: experiments with methods. J Archaeol Sci 24:649–657. https://doi.org/10.1006/jasc.1996.0147

    Article  Google Scholar 

  • Santianello F, Grimaldi S, Pedrotti A, Gialanella S (2016) First evidence of heat treatment during early Neolithic in northeastern Italy. Quat Int 402:80–89. https://doi.org/10.1016/j.quaint.2015.08.006

    Article  Google Scholar 

  • Santianello F, Berloffa A, Grimaldi S, Maffei S, Pedrotti A, Gialanella S (2021) Density measurements as a non-destructive approach to investigate the heat-treatment of siliceous lithic artefacts. J Cult Herit 47:117–122. https://doi.org/10.1016/j.culher.2020.10.004

    Article  Google Scholar 

  • Saroglou C, Kallimogiannis V (2017) Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock. J Rock Mech Geotech Eng 29:797–806. https://doi.org/10.1016/j.jrmge.2017.03.012

    Article  Google Scholar 

  • Schindler DL, Hatch JW, Hay CA, Bradt RC (1982) Aboriginal thermal alteration of a Central Pennsylvania jasper: analytical and behavioral implications. Am Antiq 47:526–544. https://doi.org/10.2307/280233

    Article  Google Scholar 

  • Schmidt P, Hiscock P (2019) Evolution of silcrete heat treatment in Australia – a regional pattern on the south-east coast and its evolution over the last 25 ka. J Paleolit Archaeol 2:74–97. https://doi.org/10.1007/s41982-019-0020-7

    Article  Google Scholar 

  • Schmidt P, Badou A, Fröhlich F (2011) Detailed FT near-infrared study of the behaviour of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat-treatment. Spectrochim Acta A Mol Biomol Spectrosc 81:552–559. https://doi.org/10.1016/j.saa.2011.06.050

    Article  Google Scholar 

  • Schmidt P, Masse S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C, Livage J, Fröhlich F (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat-treatment. J Archaeol Sci 39:135–144. https://doi.org/10.1016/j.jas.2011.09.012

    Article  Google Scholar 

  • Schmidt P, Porraz G, Slodczyk A, Bellot-Gurlet L, Archer W, Miller CE (2013) Heat-treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications. J Archaeol Sci 40:3519–3531. https://doi.org/10.1016/j.jas.2012.10.016

    Article  Google Scholar 

  • Schmidt P, Paris C, Bellot-Gurlet L (2016) The investment in time needed for heat-treatment of flint and chert. Archaeol Anthropol Sci 8:839–848. https://doi.org/10.1007/s12520-015-0259-y

    Article  Google Scholar 

  • Schmidt P, Lauer C, Buck G, Miller CE, Nickel KG (2017a) Detailed near-infrared study of the water-related transformations in silcrete upon heat-treatment. Phys Chem Miner 44(1):21–31. https://doi.org/10.1007/s00269-016-0833-6

    Article  Google Scholar 

  • Schmidt P, Spinelli Sanchez O, Kind CJ (2017b) Stone heat-treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification. PLoS One 12(12):e0188576. https://doi.org/10.1371/journal.pone.0188576

    Article  Google Scholar 

  • Schmidt P, Nash DJ, Coulson S, Göden MB, Awcock GJ (2017c) Heat-treatment as a universal technical solution for silcrete use? A comparison between silcrete from the Western Cape (South Africa) and the Kalahari (Botswana). PLoS One 12(7):e0181586. https://doi.org/10.1371/journal.pone.0181586

    Article  Google Scholar 

  • Schmidt P, Buck G, Berthold C, Lauer C, Nickel KG (2019) The mechanical properties of heat-treated rocks: a comparison between chert and silcrete. Archaeol Anthropol Sci 11:2489–2506. https://doi.org/10.1007/s12520-018-0710-y

    Article  Google Scholar 

  • Svoboda J, Šmíd M (1994) Dílenský objekt kultury nálevkovitých pohárů na Stránské skále. Pravěk NŘ 4:79–125

    Google Scholar 

  • Tatarko P, Grasso S, Porwal H, Chlup Z, Saggar R, Dlouhý I, Reece M (2014) Boron nitride nanotubes as a reinforcement for brittle matrices. J Eur Ceram Soc 34:3339–3349. https://doi.org/10.1016/j.jeurceramsoc.2014.03.028

    Article  Google Scholar 

  • Tiffagom M (1998) Témoignages d'un traitement thermique des feuilles de laurier dans le Solutréen supérieur de la grotte du Parpalló (Gandia, Espagne). Paléo 10:147–161

    Article  Google Scholar 

  • Tixier J (1976) L’industrie lithique capsienne de l’Aïn Dokkara. Région de Tébessa, Algérie. Fouilles L Balout. Lybica XXIV:21–54

  • Tixier J (1984) Le débitage par pression. In: Tixier J (ed) Economie du débitage laminair (Préhistoire de la Pierre Taillée 2). CREP, Paris, pp 57–70

    Google Scholar 

  • Valoch K (2001) Das Magdalenien in Mähren, 130 Jahre Forschung. Jahrb Röm-Ger Zentralmus Mainz 48(1):103–159

    Google Scholar 

  • Wadley L, Prinsloo LC (2014) Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age. J Hum Evol 70:49–60. https://doi.org/10.1016/j.jhevol.2013.11.003

    Article  Google Scholar 

  • Waldorf DC (2010) Roasting rocks: The art and science of heat treating. Mound Builder Books, Branson, Montana, USA

    Google Scholar 

  • Walter D, Buxbaum G, Laqua W (2001) The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim 63:733–748. https://doi.org/10.1023/A:1010187921227

    Article  Google Scholar 

  • Weymouth JH, Williamson WO (1951) Some physical properties of raw and calcined flint. Mineral Mag 29(213):573–593. https://doi.org/10.1180/minmag.1951.029.213.04

    Article  Google Scholar 

  • Wilke PJ, Flenniken JJ, Ozbun TL (1991) Clovis technology at the Anzick Site, Montana. J Calif Gt Basin Anthropol 13(2):242–272

    Google Scholar 

  • Yonekura K, Suzuki T (2009) Microhardness analysis and characterization of Palaeolithic stone tool materials for understanding primary material selections and utilizations. Mater Charact 60:282–291. https://doi.org/10.1016/j.matchar.2008.08.008

    Article  Google Scholar 

  • Zhang ZX (2016) Rock fracture and blasting. Elsevier, Theory and Applications

    Google Scholar 

  • Zhou Z, Huan Y, Shao Y, Dai Y, Yang H (2014) Heat-treated stone artifacts at Shuidonggou, Northwest China and their archaelogical implications. Quat Int 347:84–90. https://doi.org/10.1016/j.quaint.2014.07.010

    Article  Google Scholar 

Download references

Funding

This research was financed by the Czech Science Foundation project 18-02606S: non-destructive determination of heated artefacts in Upper Palaeolithic assemblages (2018–2020). The work of Petr Schnabl in the year 2021 was financed by the Czech Science Foundation project 20-10035 S and institutional support RVO 67985831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Moník.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moník, M., Hadraba, H., Milde, D. et al. Heat treatment and mechanics of Moravian Jurassic cherts. Archaeol Anthropol Sci 13, 158 (2021). https://doi.org/10.1007/s12520-021-01388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01388-z

Keywords

Navigation