Skip to main content

Advertisement

Log in

Settlement activity in later prehistory: invisible in the archaeological record but documented by pollen and sedimentary evidence

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The paper deals with landscape and settlement development between ca. 300 BC and AD 600 in a defined area of the northern Czech Republic. Despite favourable natural conditions, human occupation of the area did not begin until the end of the first millennium BC. Natural soil and vegetation development therefore lasted longer than in the traditionally settled lowland areas. Initial settlement activity from the La Tène period caused substantial erosion of deforested luvisols and retisols, well-documented by an accumulation of eroded soil horizons in a local wetland. The erosion process continued for more than 500 years following the end of the La Tène settlement, despite the fact that archaeological research revealed no reliable evidence of occupation prior to the twelfth century AD. Pollen and sedimentary records from the wetland, however, clearly indicate the existence of settlement activity during the “archaeologically invisible” Roman and Migration periods. This case is not unique and underlines the importance of environmental analysis for the detection of settlement history, particularly during periods of poor archaeological visibility or in places that are difficult to research using standard archaeological methods. The change in conditions after the first deforestation and subsequent late prehistoric settlement triggered the degradation of the deforested luvisols and retisols and led to the diversification of the soil cover, which now also includes regosols, gleysols, and truncated luvisols and retisols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

Similar content being viewed by others

References

  • Abraham V, Oušková V, Kuneš P (2014) Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic. PLoS One 9(6):e100117. https://doi.org/10.1371/journal.pone.0100117

    Article  Google Scholar 

  • Abraham V, Kuneš P, Svitavská-Svobodová H, Kozáková R, Jamrichová E, Švarcová M, Pokorný P (2016) A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia. Preslia 88:409–434

    Google Scholar 

  • Baum T (2014) Models of wetland settlement and associated land use in South-West Germany during the fourth millennium BC. Veg Hist Archaeobotany 23(Suppl 1):S67–S80. https://doi.org/10.1007/s00334-014-0453-3

    Article  Google Scholar 

  • Behre K (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. F. Pfeil, Munchen

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Bobek P, Svitavská-Svobodová H, Werchan B, Švarcová MG, Kuneš P (2017) Human-induced changes in fire regime and subsequent alteration of the sandstone landscape of Northern Bohemia (Czech Republic). Holocene. https://doi.org/10.1177/0959683617729443

  • Bonneau M, Souchier B (1994) Pédologie (sous la direction de Ph. Duchaufour et B. Souchier). 2. Constituants et propriétés du sol. Masson, Paris

    Google Scholar 

  • Břízová E (1999) Late Glacial and Holocene development of the vegetation in the Labe (Elbe) River flood-plain (Central Bohemia, Czech Republic). Acta Paleobotanica Suppl 2:549–554

    Google Scholar 

  • Brun C (2011) Anthropogenic indicators in pollen diagrams in eastern France: a critical review. Veg Hist Archaeobotany 20:135–142. https://doi.org/10.1007/s00334-010-0277-8

    Article  Google Scholar 

  • Brun C, Dessaint F, Richard H, Bretagnolle F (2007) Arable-weed flora and its pollen representation: a case study from the eastern part of France. Rev Palaeobot Palynol 146:29–50. https://doi.org/10.1016/j.revpalbo.2007.02.001

    Article  Google Scholar 

  • Bryson R, McEnaney de Wall K (eds) (2007) A paleoclimatology workbook: high resolution, site-specific, macrophysical climate modelling. The Mammoth Site, Hot Springs

    Google Scholar 

  • Court-Picon M, Buttler A, de Beaulieu J-L (2005) Modern pollen-vegetation relationships in the Champsaur valley (French Alps) and their potential in the interpretation of fossil pollen records of past cultural landscapes. Rev Palaeobot Palynol 135:13–39. https://doi.org/10.1016/j.revpalbo.2005.02.003

    Article  Google Scholar 

  • Czech Geological Survey (2016) Geomap 1:50,000. Available online at http://mapy.geology.cz/geocr_50/

  • Daněček D, Smíšek K, Korený R (2014) Předběžná zpráva o terénním výzkumu pohřebiště z mladší doby stěhování národů v polykulturní lokalitě Hostivice-Palouky, okr. Praha-západ. Sociální diferenciace barbarských komunit ve světle nových hrobových, sídlištních a sběrových nálezů. In: Komoróczy B (ed) Archeologie barbarů 2011. Archeologický ústav AVČR, Brno, Brno, pp 407–418

    Google Scholar 

  • Danielisová A, Hajnalová M (2014) Oppida and agricultural production—state of the art and prospects. Case study from the Stare Hradisko oppidum (Czech Republic). In: Hornung S (ed) Produktion-Distribution-Okonomie. Siedlungs und Wirtschaftmuster der Latènezeit, Kolloquium Otzenhausen, vol 2011. Universitatsforschungen zurprahistorischen Archaologie, Bonn, pp 407–428

    Google Scholar 

  • Danzeglocke U, Jöris O, Weninger B (2012) CalPal-2007. Available online at http://www.calpal-online.de/. Accessed 22 April 2014

  • Davies P, Robb J, Ladbrook D (2005) Woodland clearance in the Mesolithic: the social aspects. Antiquity 79:280–288. https://doi.org/10.1017/S0003598X00114085

    Article  Google Scholar 

  • Demján P, Dreslerová D (2016) Modelling distribution of archaeological settlement evidence based on heterogeneous spatial and temporal data. J Archaeol Sci 69(2016):100–109. https://doi.org/10.1016/j.jas.2016.04.003

    Article  Google Scholar 

  • Dix A, Burggraaff P, Kleefeld K-D, Küster H, Schirmer W, Zimmermann A (2005) Human impact and vegetation change as triggers for sediment dynamics in the River Rhine catchment. Erdkunde 59(3):276–293. https://doi.org/10.3112/erdkunde.2005.03.06

    Article  Google Scholar 

  • Dotterweich M (2012) Past soil erosion in Central Europe: human impact and long-term effects. Proceedings of the International Conference held in Berlin, 6–8 June 2012. Landscape Archaeol 3:39–45

    Google Scholar 

  • Dotterweich M, Stankoviansky M, Minár J, Koco Š, Papčo P (2013) Human induced soil erosion and gully system development in the Late Holocene and future perspectives on landscape evolution: the Myjava Hill Land, Slovakia. Geomorphology 201:227–245. https://doi.org/10.1016/j.geomorph.2013.06.023

    Article  Google Scholar 

  • Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork H-R (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222(1–2):80–95. https://doi.org/10.1016/j.quaint.2009.06.014

    Article  Google Scholar 

  • Dreslerová D (1995) A settlement-economic model for a prehistoric microregion: settlement activities in the Vinoř-stream basin during the Hallstatt period. In: Kuna M, Venclová N (eds) Whither archaeology. Papers in honour of Evžen Neustupný. Institute of Archaeology, Praha, pp 145–160

    Google Scholar 

  • Dreslerová D (2004) The North Prácheňsko region in prehistory. In: Gojda M (ed) Ancient landscape, settlement dynamics and non-destructive archaeology. Academia, Praha, pp 342–364

    Google Scholar 

  • Dreslerová D (2012) Les v pravěké krajině II (Forest in the prehistoric landscape II). Archeologické rozhledy LXIV:199–236

    Google Scholar 

  • Dreslerová D, Pokorný P (2004) Vývoj osídlení a struktury pravěké krajiny na středním Labi. Pokus o přímé srovnání archeologické a pyloanalytické evidence (settlement and prehistoric land-use in the middle Labe valley, Central Bohemia: a direct comparison of archaeological and pollen-analytical data). Archeologické rozhledy LVI:739–762

    Google Scholar 

  • Dreslerová D, Břízová E, Růžičková E, Zeman A (2004) Holocene environmental processes and alluvial archaeology in the middle Labe (Elbe) valley. In: Gojda M (ed) Ancient landscape, settlement dynamics and non-destructive archaeology. Academia, Praha, pp 121–171

    Google Scholar 

  • Dreslerová D, Waldhauser J, Abraham V, Kočár P, Křivánek R, Meduna P, Sádlo J (2013) Bezdězsko–Dokesko v pravěkua laténské sídliště v Oknech (the Bezděz-Doksy region [Northern Bohemia] in prehistory and the La Tène settlement at Okna). Archeologické rozhledy LXV:535–573

    Google Scholar 

  • Ebersbach R (2005) Paleoecological reconstruction and calculation of calorie requirements at Lake Zurich. Archäoprognose Brandenburg I Forschungen zur Archäologie im Land Brandenburg 8:69–88

    Google Scholar 

  • Ertlen D, Schneider N, Gauthier E, Wiethold J, Richard H, Thomas Y, Böes E (2014) Human environmental impact from the Neolithic to the Middle Ages: a pluridisciplinary approach focused on a small catchment area at the Kochersberg (Bas-Rhin, France). Quaternaire 25(3):195–208

    Article  Google Scholar 

  • Evans R (1990) Soils at risk of accelerated erosion in England and Wales. Soil Use Manag 6(3):125–131. https://doi.org/10.1111/j.1475-2743.1990.tb00821.x

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Grimm E (1992) Tilia and Tilia-graph: pollen spreadsheet and graphic programs. Program and Abstracts, 8th International Palynological Congress, Aix-en-Provence, France, 6–12 September, 56. https://doi.org/10.1111/j.1540-8159.1992.tb02953.x

  • Haase D, Fink J, Haase G, Ruske R, Pécsi M, Richter H, Altermann M, Jäger K-D (2007) Loess in Europe: its spatial distribution based on a European loess map, scale 1:2,500,000. Quat Sci Rev 26:1301–1312. https://doi.org/10.1016/j.quascirev.2007.02.003

    Article  Google Scholar 

  • Heynowski R, Reiss R (eds) (2010) Atlas zur Geschichte und Landeskunde von Sachsen. Beiheft zur Karte B I 1.1.-1.5. Ur- und Frϋhgeschichte Sachsens, Leipzig und Dresden, pp 9–198

    Google Scholar 

  • Holst D (2010) Hazelnut economy of early Holocene hunter-gatherers: a case study from Mesolithic Duvensee, northern Germany. J Archaeol Sci 37:2871–2880

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome

  • Jiřík J, Simota V (2009) Nálezy keramiky doby stěhování národů ze Zvíkova (okr. Písek). Archeologické výzkumy v jižních Čechách 22:131–136

    Google Scholar 

  • Kittel P (2014) Slope deposits as an indicator of anthropopressure in the light of research in Central Poland. Quat Int 324:34–55. https://doi.org/10.1016/j.quaint.2013.07.021

    Article  Google Scholar 

  • Kozáková R, Pokorný P, Peša V, Danielisová A, Čuláková K, Svobodová-Svitavská H (2015) Prehistoric human impact in the mountains of Bohemia: do pollen and archaeological data support the traditional scenario of a prehistoric “wilderness”? Rev Palaeobot Palynol 220:29–43. https://doi.org/10.1016/j.revpalbo.2015.04.008

    Article  Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539. https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  • Lang A, Bork H (2006) Past soil erosion in Europe. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Chichester, Wiley, pp 466–487

    Google Scholar 

  • Leopold M (2011) Buried soils and surfaces, a key archive for geoarcheology. Archaeology, soil- and life-sciences applied to enclosures and fields. Proceedings of the session “from microprobe to spatial analysis: enclosed and buried surfaces as key sources in archaeology and pedology”. European Association of Archaeologists 12th Annual Meeting, Krakow, Poland, 19–24 September 2006. Krakow: BAR International Series 2222. https://doi.org/10.1007/s10517-011-1327-7

  • Leopold M, Völkel J (2007a) Colluvium: definition, differentiation, and possible suitability for reconstructing Holocene climate data. Quat Int 162–163:133–140

    Article  Google Scholar 

  • Leopold M, Völkel J (2007b) Quantifying prehistoric soil erosion: a review of soil loss methods and their application to a Celtic square enclosure (Viereckschanze) in Southern Germany. Geoarchaeology 22(8):873–889. https://doi.org/10.1002/gea.20199

    Article  Google Scholar 

  • Meduna P, Sádlo J (2009) Bezdězsko–Dokesko. Krajina mezi odolností a stagnací. Historická geografie 35:147–160

    Google Scholar 

  • Mitasova H, Hofierka J, Zlocha M, Iverson L (1996) Modeling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Sci 10(5):629–641

    Article  Google Scholar 

  • Němeček J, Vokoun J, Smejkal J, et al (2001) Taxonomický klasifikační systém půd České republiky. ČZU a VÚMOP, Praha

    Google Scholar 

  • Novák J, Lisá L, Pokorný P, Kuna M (2012a) Charcoal analysis as an environmental tool for the study of Early Medieval sunken houses infills in Roztoky near Prague, Czech Republic. J Archaeol Sci 39(4):808–817. https://doi.org/10.1016/j.jas.2011.06.026

    Article  Google Scholar 

  • Novák J, Sádlo J, Svobodová-Svitavská H (2012b) Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). The Holocene 22:947–955. https://doi.org/10.1177/0959683611434219

    Article  Google Scholar 

  • Peeters I, Rommens T, Verstraeten G, Govers G, Van Rompaey A, Poesen J et al (2006) Reconstructing ancient topography through erosion modelling. Geomorphology 78(3–4):250–264. https://doi.org/10.1016/j.geomorph.2006.01.033

    Article  Google Scholar 

  • Pelíšek J (1972) Spraše a sprašové hlíny Československa. Geologický průzkum 14(9):257–260

    Google Scholar 

  • Pleinerová I (2007) Březno und Germanische Siedlungen: der Jüngeren Völkerwanderungszeit in Böhmen. Archeologický ústav AV ČR, Praha

    Google Scholar 

  • Pokorný P, Kuneš P (2005) Holocene acidification process recorded in three pollen profiles from Czech sandstone and river terrace environments. Ferrantia 44:101–107

    Google Scholar 

  • Pokorný P, Kuneš P (2009) Kožlí (S. Bohemia, Czech Republic). Grana 48(1):77–78. https://doi.org/10.1080/00173130902759816

    Article  Google Scholar 

  • Pokorný P, van der Knaap W (2011) 15. Brve (Czech Republic): vegetation development over the last about 2.5 millennia in the Bohemian Lowland close to Prague. Grana 50(4):311–313. https://doi.org/10.1080/00173134.2011.645551

    Article  Google Scholar 

  • Pokorný P, Boenke N, Chytráček M, Nováková K, Sádlo J, Veselý J, Kuneš P, Jankovská V (2006) Insight into the environment of a pre-Roman Iron Age hillfort at Vladař, Czech Republic, using a multi-proxy approach. Veg Hist Archaeobotany 15:419–433. https://doi.org/10.1007/s00334-006-0064-8

    Article  Google Scholar 

  • Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? The Holocene 25:716–726. https://doi.org/10.1177/0959683614566218

    Article  Google Scholar 

  • Punt W (ed) (1980) The Northwest European pollen flora. Vol 37. Umbelliferae. Elsevier, Amsterdam. https://doi.org/10.17226/1904

    Google Scholar 

  • Rasmussen P, Bradshaw E (2005) Mid- to late-Holocene land-use change and lake development at Dallund So, Denmark: study aims, natural and cultural setting, chronology and soil erosion history. Holocene 15:1105–1115

    Article  Google Scholar 

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reiss S, Dreibrodt S, Lubos C, Bork H-R (2009) Land use history and historical soil erosion at Albersdorf (northern Germany): ceased agricultural land use after the pre-historical period. Catena 77(2):107–118. https://doi.org/10.1016/j.catena.2008.11.001

    Article  Google Scholar 

  • Rommens T, Verstraeten G, Bogman P, Peeters I, Poesen J, Govers G et al (2006) Holocene alluvial sediment storage in a small river catchment in the loess area of central Belgium. Geomorphology 77(1–2):187–201. https://doi.org/10.1016/j.geomorph.2006.01.028

    Article  Google Scholar 

  • Růžičková E, Růžička M, Zeman A, Kadlec J (2001) Quaternary clastic sediments of the Czech Republic. Textures and structures of the main genetic types. Prague, Czech Geological Survey

    Google Scholar 

  • Schatz T (2000) Untersuchungen zur Holozänen Landschaftsentwicklung Nordostdeutschlands. ZALF Bericht41, Müncheberg

    Google Scholar 

  • Schmidtchen G (2003) Hang- und Moorentwicklung in der Knicklandschaft Ostholsteins–Das Profil Schlüsbek. In: Bork H-R, Schmidtchen G, Dotterweich M (eds) Bodenbildung, Bodenerosion und Reliefentwicklung im Mittel- und Jungholoza¨n Deutschlands. Forschungen zur Deutschen Landeskunde 253:251–267

  • Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897. https://doi.org/10.2307/2261452

    Article  Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17:229–241

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. The Holocene 17:243–257

  • Szal M, Kupryjanowicz M, Wyczółkowski M, Tylmann W (2014) The Iron Age in the Mrągowo Lake District, Masuria, NE Poland: the Salęt settlement micro-region as an example of long-lasting human impact on vegetation. Veg Hist Archaeobotany 23:419–437. https://doi.org/10.1007/s00334-014-0465-z

    Article  Google Scholar 

  • Tolasz R, Miková T, Valeriánová A, Voženílek V (eds) (2007) Climate atlas of Czechia. Czech Hydrometeorological Institute, Prague

    Google Scholar 

  • Tolonen K (1986) Charred particle analysis. In: Berglund B (ed) Handbook of Holocene palaeoecology and palaeohydrology. Chichester, Wiley, pp 485–496

    Google Scholar 

  • Vanwalleghem T, Poesen J, Vitse I, Bork H-R, Dotterweich M, Schmidtchen G, Mauz B (2007) Origin and evolution of closed depressions in central Belgium, European loess belt. Earth Surf Processes Landf 32:574–586. https://doi.org/10.1002/esp

    Article  Google Scholar 

  • Ward P, van Balen R, Verstraeten G, Renssen H, Vandenberghe J (2009) The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103(3):389–400. https://doi.org/10.1016/j.geomorph.2008.07.006

    Article  Google Scholar 

  • Zádorová T, Penížek V, Šefrna L, Rohošková M, Borůvka L (2011) Catena spatial delineation of organic carbon-rich colluvial soils in Chernozem regions by terrain analysis and fuzzy classification. Catena 85:22–33. https://doi.org/10.1016/j.catena.2010.11.006

    Article  Google Scholar 

  • Zádorová T, Penížek V, Šefrna L, Drábek O, Mihaljevič M, Volf Š et al (2013) Identification of Neolithic to modern erosion–sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma 195–196:56–69. https://doi.org/10.1016/j.geoderma.2012.11.012

    Article  Google Scholar 

  • Zolitschka B, Behre K-E, Schneider J (2003) Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives: examples from the Bronze Age to the Migration period, Germany. Quat Sci Rev 22:81–100. https://doi.org/10.1016/S0277-3791(02)00182-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following for their invaluable assistance: Čeněk Čišecký for the graphics and for technical support; Petr Pokorný for contributions to the PALYCZ database used for plotting Fig. 9; Zbyněk Engel for granulometry measurements; Lukáš Vlček for the help during the fieldwork; and Jiří Šebesta and Michal Raichl for helpful advices.

Funding

The research was funded by the programme RVO 67985912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Dreslerová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreslerová, D., Kozáková, R., Chuman, T. et al. Settlement activity in later prehistory: invisible in the archaeological record but documented by pollen and sedimentary evidence. Archaeol Anthropol Sci 11, 1683–1700 (2019). https://doi.org/10.1007/s12520-018-0614-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-018-0614-x

Keywords

Navigation