Skip to main content
Log in

Growth and the cell cycle in green algae dividing by multiple fission

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Most cells divide into two daughter cells; however, some green algae can have different division patterns in which a single mother cell can sometimes give rise to up to thousands of daughter cells. Although such cell cycle patterns can be very complex, they are governed by the same general concepts as the most common binary fission. Moreover, cell cycle progression appears to be connected with size, since cells need to ensure that their size after division will not drop below the limit required for survival. Although the exact mechanism that lets cells measure cell size remains largely unknown, there have been several prominent hypotheses that try to explain it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abner K, Aaviksaar T, Adamberg K, Vilu R (2014) Single-cell model of prokaryotic cell cycle. J Theor Biol 341:78–87

    PubMed  Google Scholar 

  • Ballin G, Doucha J, Zachleder V, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of nitrogen starvation. Biol Plant 30:81–91

    CAS  Google Scholar 

  • Bental M, Pick U, Avron M, Degani H (1991) Polyphosphate metabolism in the alga Dunaliella salina studied by 31P-NMR. Biochim Biophys Acta 1092:21–28

    CAS  PubMed  Google Scholar 

  • Bišová K, Zachleder V (2014) Cell-cycle regulation in green algae dividing by multiple fission. J Exp Bot 65:2585–2602

    PubMed  Google Scholar 

  • Bišová K, Vítová M, Zachleder V (2000) The activity of total histone H1 kinases is related to growth and commitment points while the p13(suc1)-bound kinase activity relates to mitoses in the alga Scenedesmus quadricauda. Plant Physiol Biochem 38:755–764

    Google Scholar 

  • Bramhill D (1997) Bacterial cell division. Annu Rev Cell Dev Biol 13:395–424

    CAS  PubMed  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    PubMed  Google Scholar 

  • Cipollina C, Vai M, Porro D, Hatzis C (2007) Towards understanding of the complex structure of growing yeast populations. J Biotechnol 128:393–402

    CAS  PubMed  Google Scholar 

  • Cooper S (1979) A unifying model for the G1 period in prokaryotes and eukaryotes. Nature 280:17–19

    CAS  PubMed  Google Scholar 

  • Cooper S (1984) The continuum model as a unified description of the division cycle of eukaryotes and prokaryotes. In: Nurse P, Streiblová E (eds) The microbial cell cycle. Boca Raton, CRC Press, pp 7–18

    Google Scholar 

  • Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468:1074–1079

    CAS  PubMed  Google Scholar 

  • Deng L, Baldissard S, Kettenbach AN, Gerber SA, Moseley JB (2014) Dueling kinases regulate cell size at division through the SAD kinase Cdr2. Curr Biol 24:428–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR (2007) The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448:947–951

    PubMed  Google Scholar 

  • Donnan L, John PCL (1983) Cell cycle control by timer and sizer in Chlamydomonas. Nature 304:630–633

    CAS  PubMed  Google Scholar 

  • Donnan L, Carvill EP, Gilliland TJ, John PCL (1985) The cell-cycles of Chlamydomonas and Chlorella. New Phytol 99:1–40

    Google Scholar 

  • Ewald JC, Kuehne A, Zamboni N, Skotheim JM (2016) The yeast cyclin-dependent kinase routes carbon fluxes to fuel cell cycle progression. Mol Cell 62:532–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fantes P, Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107:377–386

    CAS  PubMed  Google Scholar 

  • Fantes PA, Nurse P (1978) Control of the timing of cell division in fission yeast. Cell size mutants reveal a second control pathway. Exp Cell Res 115:317–329

    CAS  PubMed  Google Scholar 

  • Floyd GL (1978) Mitosis and cytokinesis in Asteromonas gracilis, a wall-less green monad. J Phycol 14:440–445

    Google Scholar 

  • Forsburg SL, Nurse P (1991) Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7:227–256

    CAS  PubMed  Google Scholar 

  • Futcher B (2009) TgI4 lipase: a big fat target for cell-cycle entry. Mol Cell 33:143–144

    CAS  PubMed  Google Scholar 

  • Haupt A, Minc N (2018) How cells sense their own shape - mechanisms to probe cell geometry and their implications in cellular organization and function. J Cell Sci 131:1–10

    CAS  Google Scholar 

  • Howard A, Pelc SR (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Lond) 6:261–273

    CAS  Google Scholar 

  • Izumi M, Hidema J, Makino A, Ishida H (2013) Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol 161:1682–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  • John PCL (1984) Control of the cell division cycle in Chlamydomonas. Microbiol Sci 1:96–101

    CAS  PubMed  Google Scholar 

  • John PCL (1987) Control points in the Chlamydomonas cell cycle. In: Wiesnar W, Robinson DG, Starr RC (eds) Algal development molecular and cellular aspects. Springer-Verlag, Berlin, pp 9–16

    Google Scholar 

  • Kirk DL (1998) Volvox: molecular genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kobayashi T, Tanabe I, Obayashi A (1974) On the properties of the starch granules from unicellular green algae. Agric Biol Chem 38:941–946

    CAS  Google Scholar 

  • Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein SD (2009) Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53–63

    CAS  PubMed  Google Scholar 

  • Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V, Čížková M, Brányiková I, Vítová M (2013) The microalga Parachlorella kessleri––a novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107

    CAS  PubMed  Google Scholar 

  • Li Y, Liu D, Lopez-Paz C, Olson BJ, Umen JG (2016) A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. eLife 5:e10767

    PubMed  PubMed Central  Google Scholar 

  • Lien T, Knutsen G (1972) Synchronous cultures of Chlamydomonas reinhardti synthesis of repressed and derepressed phosphatase during the life cycle. Biochim Biophys Acta 287:154–163

    CAS  PubMed  Google Scholar 

  • Lien T, Knutsen G (1979) Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): a review of optimal conditions. J Phycol 15:191–200

    CAS  Google Scholar 

  • Lorenzen H (1968) Aspects of synchronous culturing of Chlorella. Phykos 7:50–57

    Google Scholar 

  • Lutkenhaus J (2010) Growth and development: prokaryotes. Curr Opin Microbiol 13:727–729

    PubMed  Google Scholar 

  • Martin SG, Berthelot-Grosjean M (2009) Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459:852–856

    CAS  PubMed  Google Scholar 

  • Masui Y, Wang P (1998) Cell cycle transition in early embryonic development of Xenopus laevis. Biol Cell 90:537–548

    CAS  PubMed  Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 96:555–564

    CAS  PubMed  Google Scholar 

  • Mitchison JM (1971) The biology of the cell cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Miyachi S, Kanai R, Mihara S, Miyachi S, Aoki S (1964) Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim Biophys Acta 93:625–634

    CAS  PubMed  Google Scholar 

  • Moberg S, Knutsen G, Goksoyr J (1968) The point of no return concept in cell division. The effects of some metabolic inhibitors on synchronized Chlorella pyrenoidosa. Physiol Plant 21:390–400

    CAS  Google Scholar 

  • Morgan DO (2006) Cell cycle: principles of control. New Science Press, London

    Google Scholar 

  • Morimura Y (1959) Synchronous culture of Chlorella. I. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol 1:49–62

    Google Scholar 

  • Moseley JB, Mayeux A, Paoletti A, Nurse P (2009) A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459:857–U858

    CAS  PubMed  Google Scholar 

  • Nurse P (1975) Genetic control of cell size at division in yeast. Nature 256:547–551

    CAS  PubMed  Google Scholar 

  • Nurse P (1985) Cell cycle control genes in yeast. Trends Genet 1:51–55

    CAS  Google Scholar 

  • Nurse P, Bissett Y (1981) Gene required in G1 for commitment to cell cycle and in G2 control of mitosis in fission yeast. Nature 292:558–560

    CAS  PubMed  Google Scholar 

  • Pan KZ, Saunders TE, Flor-Parra I, Howard M, Chang F (2014) Cortical regulation of cell size by a sizer cdr2p. eLife 3:e02040

    PubMed  PubMed Central  Google Scholar 

  • Pirson A, Lorenzen H (1966) Synchronized dividing algae. Plant Physiol 17:439–458

    Google Scholar 

  • Pringle JR, Hartwell LH (eds) (1981) The Saccharomyces cerevisiae cell cycle. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Rading MM, Engel TA, Lipowsky R, Valleriani A (2011) Stationary size distributions of growing cells with binary and multiple cell division. J Stat Phys 145:1–22

    Google Scholar 

  • Ral JP, Colleoni C, Wattebled F, Dauvillee D, Nempont C, Deschamps P, Li Z, Morell MK, Chibbar R, Purton S et al (2006) Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol 142:305–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert L (2015) Size sensors in bacteria, cell cycle control, and size control. Front Microbiol 6:515

    PubMed  PubMed Central  Google Scholar 

  • Samson RY, Bell SD (2011) Cell cycles and cell division in the archaea. Curr Opin Microbiol 14:350–356

    CAS  PubMed  Google Scholar 

  • Šetlík I, Zachleder V (1984) The multiple fission cell reproductive patterns in algae. In: Nurse P, Streiblová E (eds) The microbial cell cycle. Boca Raton, CRC Press Inc., pp 253–279

    Google Scholar 

  • Šetlík I, Berková E, Doucha J, Kubín S, Vendlová J, Zachleder V (1972) The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol 41:172–213

    Google Scholar 

  • Šetlík I, Zachleder V, Doucha J, Berková E, Bartoš J (1975) The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch Hydrobiol 14:70–104

    Google Scholar 

  • Šetlík I, Ballin G, Doucha J, Zachleder V (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of sulphur starvation. Biol Plant 30:161–169

    Google Scholar 

  • Siddiqui, Stillman B (2007) The biochemistry of initiating eukaryotic DNA replication. J Biol Chem 282:32370–32383

    CAS  PubMed  Google Scholar 

  • Spudich JL, Sager R (1980) Regulation of the Chlamydomonas cell cycle by light and dark. J Cell Biol 85:136–145

    CAS  PubMed  Google Scholar 

  • Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, von Korff M, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci U S A 106:10348–10353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sveiczer A, Novak B, Mitchison J (1996) The size control of fission yeast revisited. J Cell Sci 109:2947–2957

    CAS  PubMed  Google Scholar 

  • Tamiya H, Iwamura T, Shibata K, Hase E, Nihei T (1953) Correlation between photosynthesis and light-independent metabolism in growth of Chlorella. Biochim Biophys Acta 12:23–40

    CAS  PubMed  Google Scholar 

  • Turner JJ, Ewald JC, Skotheim JM (2012) Cell size control in yeast. Curr Biol 22:R350–R359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umen JG (2005) The elusive sizer. Curr Opin Cell Biol 17:435–441

    CAS  PubMed  Google Scholar 

  • Umen JG, Goodenough UW (2001) Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev 15:1652–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilela M, Morgan JJ, Lindahl PA (2010) Mathematical model of a cell size checkpoint. PLoS Comput Biol 6:11

    Google Scholar 

  • Vítová M, Bišová K, Hlavová M, Kawano S, Zachleder V, Čížková M (2011a) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. Planta 234:599–608

    PubMed  Google Scholar 

  • Vítová M, Bišová K, Umysová D, Hlavová M, Kawano S, Zachleder V, Čížková M (2011b) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. Planta 233:75–86

    PubMed  Google Scholar 

  • Wang P, Hayden S, Masui Y (2000) Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stagein Xenopus laevis. J Exp Zool 287:128–144

    CAS  PubMed  Google Scholar 

  • Wanka F (1968) Ultrastructural changes during normal and colchicine-inhibited cell division of Chlorella. Protoplasma 66:105–130

    CAS  PubMed  Google Scholar 

  • Wanka F (1975) Possible role of the pyrenoid in the reproductional phase of the cell cycle of Chlorella. Colloq Intern CNRS 240:132–136

    Google Scholar 

  • Willis L, Huang KC (2017) Sizing up the bacterial cell cycle. Nat Rev Microbiol 15:606–620

    CAS  PubMed  Google Scholar 

  • Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshda Y, Musumi O, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893

    CAS  PubMed  Google Scholar 

  • Zachleder V (1995) Regulation of growth processes during the cell cycle of the chlorococcal alga Scenedesmus quadricauda under a DNA replication block. J Phycol 30:941–947

    Google Scholar 

  • Zachleder V, Šetlík I (1988) Distinct controls of DNA-replication and of nuclear division in the cell-cycles of the chlorococcal alga Scenedesmus quadricauda. J Cell Sci 91:531–539

    CAS  Google Scholar 

  • Zachleder V, Šetlík I (1990) Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda. J Cell Sci 97:631–638

    Google Scholar 

  • Zachleder V, van den Ende H (1992) Cell-cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J Cell Sci 102:469–474

    CAS  Google Scholar 

  • Zachleder V, Doucha J, Berková E, Šetlík I (1975) The effect of synchronizing dark period on populations of Scenedesmus quadricauda. Biol Plant 17:416–433

    CAS  Google Scholar 

  • Zachleder V, Ballin G, Doucha J, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of phosphorus starvation. Biol Plant 30:92–99

    CAS  Google Scholar 

  • Zachleder V, Bišová K, Vítová M, Kubín Š, Hendrychová J (2002) Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur J Phycol 37:361–371

    Google Scholar 

  • Zachleder V, Bišová K, Vítová M (2016) The cell cycle of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Dordrecht, Springer, pp 3–46

    Google Scholar 

  • Zachleder V, Ivanov I, Vítová M, Bišová K (2019) Effects of cyclin-dependent kinase activity on the coordination of growth and the cell cycle in green algae at different temperatures. J Exp Bot 70:845–858

    PubMed  Google Scholar 

  • Zhao G, Chen Y, Carey L, Futcher B (2016) Cyclin-dependent kinase co-ordinates carbohydrate metabolism and cell cycle in S. cerevisiae. Mol Cell 62:546–557

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Grant Agency of the Czech Republic (grant no. 19-12607S) and by the National Programme of Sustainability I (project no. LO1416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Bišová.

Additional information

Dedicated to the memory of Prof. Ivan Šetlík.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, I.N., Vítová, M. & Bišová, K. Growth and the cell cycle in green algae dividing by multiple fission. Folia Microbiol 64, 663–672 (2019). https://doi.org/10.1007/s12223-019-00741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00741-z

Navigation