Skip to main content

Advertisement

Log in

Bioethanol production from microalgae polysaccharides

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The worldwide growing demand for energy permanently increases the pressure on industrial and scientific community to introduce new alternative biofuels on the global energy market. Besides the leading role of biodiesel and biogas, bioethanol receives more and more attention as first- and second-generation biofuel in the sustainable energy industry. Lately, microalgae (green algae and cyanobacteria) biomass has also remarkable potential as a feedstock for the third-generation biofuel production due to their high lipid and carbohydrate content. The third-generation bioethanol production technology can be divided into three major processing ways: (i) fermentation of pre-treated microalgae biomass, (ii) dark fermentation of reserved carbohydrates and (iii) direct “photo-fermentation” from carbon dioxide to bioethanol using light energy. All three technologies provide possible solutions, but from a practical point of view, traditional fermentation technology from microalgae biomass receives currently the most attention. This study mainly focusses on the latest advances in traditional fermentation processes including the steps of enhanced carbohydrate accumulation, biomass pre-treatment, starch and glycogen downstream processing and various fermentation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. According to applied phycology, these represent microscopic, unicellular, filamentous or colonial prokaryotic cyanobacteria and eukaryotic algae that are capable of converting inorganic nutrients, water, carbon dioxide and light energy (sunlight) into biomass via photosynthesis.

Abbreviations

Acetyl-CoA:

Acetyl coenzyme A

ADHI, ADHII:

Alcohol dehydrogenase I and II

ATP:

Adenosine triphosphate

CBP:

Consolidated bioprocess

CCM:

Carbon dioxide concentrating mechanism

DW:

Dry mass

GRAS:

Generally recognized as safe

PBRs:

Photobioreactors

PDC:

Pyruvate decarboxylase

PHB:

Poly(3-hydroxybutyrate)

PSI, II:

Photosystem I, II

RuBisCO:

Ribulose-1,5-bisphosphate

SHF:

Separate hydrolysis and fermentation

SSF:

Simultaneous saccharification and fermentation

NaHCO3 :

Sodium bicarbonate

References

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66

    CAS  PubMed  Google Scholar 

  • Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang JS, Hasunuma T, Kondo A (2018) Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition. Biotechnol Biofuels 11:50

    PubMed  PubMed Central  Google Scholar 

  • Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang J-S, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211–215

    CAS  PubMed  Google Scholar 

  • Aikawa S et al (2013) Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ Sci 6:1844–1849

    CAS  Google Scholar 

  • Ajit A, Sulaiman AZ, Chisti Y (2017) Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food Bioprod Process 102:123–135

    CAS  Google Scholar 

  • Arad SM, Lerental YB, Dubinsky O (1992) Effect of nitrate and sulfate starvation on polysaccharide formation in Rhodella reticulata. Bioresour Technol 42:141–148

    CAS  Google Scholar 

  • Arias DM, Uggetti E, García-Galán MJ, García J (2018) Production of polyhydroxybutyrates and carbohydrates in a mixed cyanobacterial culture: effect of nutrients limitation and photoperiods. New Biotechnol

  • Ariño X, Ortega-Calvo J-J, Hernandez-Marine M, Saiz-Jimenez C (1995) Effect of sulfur starvation on the morphology and ultrastructure of the cyanobacterium Gloeothece sp. PCC 6909. Arch Microbiol 163:447–453

    Google Scholar 

  • Bachmann B, Hofmann R, Follmann H (1983) Tight coordination of ribonucleotide reduction and thymidylate synthesis in synchronous algae. FEBS Lett 152:247–250

    CAS  Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90

    PubMed  PubMed Central  Google Scholar 

  • Bellou S, Aggelis G (2013) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493

    CAS  PubMed  Google Scholar 

  • Ben-Amotz A (1975) Adaptation of the unicellular alga Dunaliella parva to a saline environment. J Phycol 11:50–54

    CAS  Google Scholar 

  • Benavides AMS, Ranglová K, Malapascua JR, Masojídek J, Torzillo G (2017) Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond. Algal Res 28:48–56

    Google Scholar 

  • Bennamoun L, Afzal MT, Léonard A (2015) Drying of alga as a source of bioenergy feedstock and food supplement–a review. Renew Sust Energ Rev 50:1203–1212

    CAS  Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bharathiraja B et al (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renew Sust Energ Rev 47:634–653

    CAS  Google Scholar 

  • Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A (2017) Algal bioethanol production technology: a trend towards sustainable development. Renew Sust Energ Rev 71:976–985

    CAS  Google Scholar 

  • Boboescu IZ, Gherman VD, Lakatos G, Pap B, Bíró T, Maroti G (2016) Surpassing the current limitations of biohydrogen production systems: the case for a novel hybrid approach. Bioresour Technol 204:192–201

    CAS  PubMed  Google Scholar 

  • Bracken ME et al (2015) Signatures of nutrient limitation and co-limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos, 124:113–121

    Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae - novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Google Scholar 

  • Brennan L, Owende P (2010a) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Google Scholar 

  • Brennan L, Owende P (2010b) Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Google Scholar 

  • Brown M, Jeffrey S, Volkman J, Dunstan G (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    CAS  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  Google Scholar 

  • Busi MV, Barchiesi J, Martín M, Gomez-Casati DF (2014) Starch metabolism in green algae. Starch-Stärke 66:28–40

    CAS  Google Scholar 

  • Cade-Menun BJ, Paytan A (2010) Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121:27–36

    CAS  Google Scholar 

  • Caporgno M, Taleb A, Olkiewicz M, Font J, Pruvost J, Legrand J, Bengoa C (2015) Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Res 10:232–239

    Google Scholar 

  • Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552

    Google Scholar 

  • Catalanotti C, Yang W, Posewitz MC, Grossman AR (2013) Fermentation metabolism and its evolution in algae. Front Plant Sci 4:150

    PubMed  PubMed Central  Google Scholar 

  • Champigny M (1985) Regulation of photosynthetic carbon assimilation at the cellular level: a review. Photosynth Res 6:273–286

    CAS  PubMed  Google Scholar 

  • Chen C-Y et al (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    CAS  Google Scholar 

  • Cheng D, He Q (2014) Assessment of environmental stresses for enhanced microalgal biofuel production–an overview. Front Energy Res 2:26

    Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    CAS  PubMed  Google Scholar 

  • Choi W et al (2012) Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem Biochem Eng Q 26:15–21

    CAS  Google Scholar 

  • Choix FJ, de Bashan LE, Bashan Y (2012) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzym Microb Technol 51:300–309

    CAS  Google Scholar 

  • Chojnacka K, Marquez-Rocha F-J (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

    Google Scholar 

  • Cisneros RJ, Zapf JW, Dunlap RB (1993) Studies of 5-fluorodeoxyuridine 5′-monophosphate binding to carboxypeptidase A-inactivated thymidylate synthase from Lactobacillus casei. J Biol Chem 268:10102–10108

    CAS  PubMed  Google Scholar 

  • D'Souza FM, Kelly GJ (2000) Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 181:311–329

    Google Scholar 

  • de Castro AS, Garcia VMT (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412

    Google Scholar 

  • de Farias Silva CE, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842

    Google Scholar 

  • de Farias Silva CE, Sforza E, Bertucco A (2018) Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus. J Appl Phycol 30:261–270

    Google Scholar 

  • De Oliveira M, Monteiro M, Robbs P, Leite S (1999) Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquac Int 7:261–275

    Google Scholar 

  • De Philippis R, Sili C, Vincenzini M (1992) Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. Microbiology 138:1623–1628

    Google Scholar 

  • De Porcellinis A, Frigaard N-U, Sakuragi Y (2017) Determination of the glycogen content in cyanobacteria. J Vis Exp:e56068

  • Dean AP, Estrada B, Nicholson JM, Sigee DC (2008a) Molecular response of Anabaena flos-aquae to differing concentrations of phosphorus: a combined Fourier transform infrared and X-ray microanalytical study. Phycol Res 56:193–201

    CAS  Google Scholar 

  • Dean AP, Nicholson JM, Sigee DC (2008b) Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. Eur J Phycol 43:345–354

    CAS  Google Scholar 

  • Deng M-D, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter J, Armshaw P, Sheahan C, Pembroke J (2015) The state of autotrophic ethanol production in cyanobacteria. J Appl Microbiol 119:11–24

    CAS  PubMed  Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    CAS  Google Scholar 

  • Dienst D et al (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol Biofuels 7:21

    PubMed  PubMed Central  Google Scholar 

  • Dourou M, Tsolcha ON, Tekerlekopoulou AG, Bokas D, Aggelis G (2018) Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Eng Life Sci 18:851–860

    CAS  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    CAS  Google Scholar 

  • Dragone G, Fernandes BD, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae, Current research, technology and education topics in applied microbiology and microbial biotechnology. 2:1355–1366

  • Eriksen NT, Riisgård FK, Gunther WS, Iversen JJL (2007) On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol 19:161

    CAS  PubMed  Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed-stock alga Spirogyra species. Int J Eng Sci Technol 3:1749–1755

    Google Scholar 

  • Fernandes BD, Dragone GM, Teixeira JA, Vicente AA (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol 161:218–226

    CAS  PubMed  Google Scholar 

  • Figueroa-Torres GM, Pittman JK, Theodoropoulos C (2017) Kinetic modelling of starch and lipid formation during mixotrophic, nutrient-limited microalgal growth. Bioresour Technol 241:868–878

    CAS  PubMed  Google Scholar 

  • Fouchard S et al (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman O, Dubinsky Z, Arad SM (1991) Effect of light intensity on growth and polysaccharide production in red and blue-green rhodophyta unicells. Bioresour Technol 38:105–110

    CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865

    CAS  Google Scholar 

  • Geider RJ, La Roche J (2002) Redfield revisited: variability of C/N/P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Google Scholar 

  • Giordano M (2001) Interactions between C and N metabolism in Dunaliella salina cells cultured at elevated CO2 and high N concentrations. J Plant Physiol 158:577–581

    CAS  Google Scholar 

  • Giordano M, Bowes G (1997) Gas exchange and C allocation in Dunaliella salina cells in response to the N source and CO2 concentration used for growth. Plant Physiol 115:1049–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–198

    CAS  PubMed  Google Scholar 

  • Guerrini F, Cangini M, Boni L, Trost P, Pistocchi R (2000) Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J Phycol 36:882–890

    CAS  Google Scholar 

  • Gupta PL, Lee S-M, Choi H-J (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417

    CAS  PubMed  Google Scholar 

  • Harun R, Jason W, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467

    CAS  Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294

    CAS  Google Scholar 

  • Hemschemeier A, Happe T (2005) The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Portland Press Limited

  • Hena S, Znad H, Heong K, Judd S (2018) Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res 128:267–277

    CAS  PubMed  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González M (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Google Scholar 

  • Heyer H, Krumbein WE (1991) Excretion of fermentation products in dark and anaerobically incubated cyanobacteria. Arch Microbiol 155:284–287

    CAS  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    CAS  Google Scholar 

  • Ho S-H et al (2017) Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes. Biotechnol Biofuels 10:27

    PubMed  PubMed Central  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    CAS  PubMed  Google Scholar 

  • Hosono H et al (1994) Effect of culture temperature shift on the cellular sugar accumulation of Chlorella vulgaris SO-26. J Ferment Bioeng 78:235–240

    CAS  Google Scholar 

  • Hossain MNB, Basu JK, Mamun M (2015) The production of ethanol from micro-algae Spirulina. Procedia Eng 105:733–738

    Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition vol 1. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Huang W-D, Zhang Y-HP (2011) Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation. Energy Environ Sci 4:784–792

    CAS  Google Scholar 

  • Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346

    CAS  PubMed  Google Scholar 

  • Ingram L, Conway T, Clark D, Sewell G, Preston J (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izumo A, Fujiwara S, Oyama Y, Satoh A, Fujita N, Nakamura Y, Tsuzuki M (2007) Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: comparison of structure and properties of pyrenoid and stroma starch. Plant Sci 172:1138–1147

    CAS  Google Scholar 

  • Jensen S, Knutsen G (1993) Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. J Appl Phycol 5:495–504

    Google Scholar 

  • Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL, Masojídek J (2016) Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar Biotechnol 18:24–36

    CAS  PubMed  Google Scholar 

  • Ji X, Cheng J, Gong D, Zhao X, Qi Y, Su Y, Ma W (2018) The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci Total Environ 633:593–599

    CAS  PubMed  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    CAS  PubMed  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346–351

    CAS  PubMed  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Google Scholar 

  • Kadouche D et al (2016) Characterization of function of the GlgA2 glycogen/starch synthase in Cyanobacterium sp. Clg1 highlights convergent evolution of glycogen metabolism into starch granule aggregation. Plant Physiol:00049.02016

  • Kämäräinen J, Knoop H, Stanford NJ, Guerrero F, Akhtar MK, Aro EM, Steuer R, Jones PR (2012) Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J Biotechnol 162:67–74

    PubMed  Google Scholar 

  • Khalil ZI, Asker MM, El-Sayed S, Kobbia IA (2010) Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J Microbiol Biotechnol 26:1225–1231

    CAS  PubMed  Google Scholar 

  • Kim HM, Wi SG, Jung S, Song Y, Bae H-J (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134

    CAS  PubMed  Google Scholar 

  • Klein U, Betz A (1978) Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusii. Plant Physiol 61:953–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopka J et al (2017) Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Biofuels 10:56

    PubMed  PubMed Central  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakatos G, Balogh D, Farkas A, Ördög V, Nagy PT, Bíró T, Maróti G (2017) Factors influencing algal photobiohydrogen production in algal-bacterial co-cultures. Algal Res 28:161–171

    Google Scholar 

  • Lakatos G, Deák Z, Vass I, Rétfalvi T, Rozgonyi S, Rákhely G, Ördög V, Kondorosi É, Maróti G (2014) Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem 16:4716–4727

    CAS  Google Scholar 

  • Lee H-J, Lim W-S, Lee J-W (2013) Improvement of ethanol fermentation from lignocellulosic hydrolysates by the removal of inhibitors. J Ind Eng Chem 19:2010–2015

    CAS  Google Scholar 

  • Lee SY, Cho JM, Chang YK, Oh Y-K (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresour Technol

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    CAS  PubMed  Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36:510–522

    CAS  PubMed  Google Scholar 

  • Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR (2012) A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. Plant Physiol 158:1293–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malibari R, Sayegh F, Elazzazy AM, Baeshen MN, Dourou M, Aggelis G (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea–Jeddah. J Clean Prod 198:160–169

    CAS  Google Scholar 

  • Manochio C, Andrade B, Rodriguez R, Moraes B (2017) Ethanol from biomass: a comparative overview. Renew Sust Energ Rev 80:743–755

    Google Scholar 

  • Märkl H, Bronnenmeier R, Wittek B (1991) The resistance of microorganisms to hydrodynamic stress. Int Chem Eng 31:185–196

    Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012a) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645

    CAS  PubMed  Google Scholar 

  • Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937–3950

    CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012b) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. BioEnergy Res 5:915–925

    CAS  Google Scholar 

  • Matsubara K (2004) Recent advances in marine algal anticoagulants. Curr Med Chem Cardiovasc Hematol Agents 2:13–19

    CAS  PubMed  Google Scholar 

  • Melendez-Hevia E, Waddell T, Shelton E (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295:477–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    CAS  PubMed  Google Scholar 

  • Möllers KB, Cannella D, Jørgensen H, Frigaard N-U (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:64

    PubMed  PubMed Central  Google Scholar 

  • Mühlroth A et al (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    PubMed  PubMed Central  Google Scholar 

  • Mulchandani K, Kar JR, Singhal RS (2015) Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Appl Biochem Biotechnol 176(6):1613–1626

    CAS  PubMed  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Takahashi JI, Sakurai A, Inaba Y, Suzuki E, Nihei S, Fujiwara S, Tsuzuki M, Miyashita H, Ikemoto H, Kawachi M, Sekiguchi H, Kurano N (2005) Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol 46:539–545

    CAS  PubMed  Google Scholar 

  • Namakoshi K, Nakajima T, Yoshikawa K, Toya Y, Shimizu H (2016) Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803. J Biotechnol 239:13–19

    CAS  PubMed  Google Scholar 

  • Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166

    CAS  PubMed  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    CAS  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    CAS  PubMed  Google Scholar 

  • Nyvall P, Pelloux J, Davies HV, Pedersén M, Viola R (1999) Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta 209:143–152

    CAS  PubMed  Google Scholar 

  • Ogbonda KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98:2207–2211

    CAS  PubMed  Google Scholar 

  • Ogbonna JC, Tanaka H (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng 82:558–564

    CAS  Google Scholar 

  • Pade N, Mikkat S, Hagemann M (2017) Ethanol, glycogen and glucosylglycerol represent competing carbon pools in ethanol-producing cells of Synechocystis sp. PCC 6803 under high-salt conditions. Microbiology 163:300–307

    CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    CAS  PubMed  Google Scholar 

  • Poblete R, Cortes E, Macchiavello J, Bakit J (2018) Factors influencing solar drying performance of the red algae Gracilaria chilensis. Renew Energy 126:978–986

    Google Scholar 

  • Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340

    Google Scholar 

  • Raven JA, Beardall J (2003) Carbohydrate metabolism and respiration in algae. In: Photosynthesis in algae. Springer, pp 205–224

  • Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    CAS  Google Scholar 

  • Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236

    CAS  PubMed  Google Scholar 

  • Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology. John Wiley & Sons

  • Roopnarain A, Gray V, Sym S (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411

    CAS  PubMed  Google Scholar 

  • Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2:152–195

    Google Scholar 

  • Sangar VK, Dugan PR (1972) Polysaccharide produced by Anacystis nidulans: its ecological implication. Appl Microbiol 24:732–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sassano C, Gioielli L, Ferreira L, Rodrigues M, Sato S, Converti A, Carvalho J (2010) Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass Bioenergy 34:1732–1738

    CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    CAS  PubMed  Google Scholar 

  • Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z (2017) Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res 23:196–202

    Google Scholar 

  • Shokrkar H, Ebrahimi S, Zamani M (2017) Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200:380–386

    CAS  Google Scholar 

  • Show K-Y, Lee D-J, Tay J-H, Lee T-M, Chang J-S (2015) Microalgal drying and cell disruption–recent advances. Bioresour Technol 184:258–266

    CAS  PubMed  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigee DC, Bahrami F, Estrada B, Webster RE, Dean AP (2007) The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis. Phycologia 46:583–592

    Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    CAS  PubMed  Google Scholar 

  • Skorupskaite V, Makareviciene V, Ubartas M, Karosiene J, Gumbyte M (2017) Green algae Ankistrodesmus fusiformis cell disruption using different modes. Biomass Bioenergy 107:311–316

    CAS  Google Scholar 

  • Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W (2014) A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 13:3519–3532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki E, Suzuki R (2013) Variation of storage polysaccharides in phototrophic microorganisms. J Appl Glycosci 60:21–27

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    CAS  PubMed  Google Scholar 

  • Taleb A et al (2016) Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresour Technol 218:480–490

    CAS  PubMed  Google Scholar 

  • Taraldsvik M, Myklestad SM (2000) The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur J Phycol 35:189–194

    Google Scholar 

  • Torzillo G, Sacchi A, Materassi R (1991) Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour Technol 38:95–100

    Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    CAS  Google Scholar 

  • Tsolcha O, Tekerlekopoulou A, Akratos C, Aggelis G, Genitsaris S, Moustaka-Gouni M, Vayenas D (2018) Agroindustrial wastewater treatment with simultaneous biodiesel production in attached growth systems using a mixed microbial culture. Water 10:1693

    CAS  Google Scholar 

  • Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Aggelis G, Genitsaris S, Moustaka-Gouni M, Vayenas DV (2017) Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium. J Clean Prod 148:185–193

    CAS  Google Scholar 

  • Tsolcha ON et al (2016) Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production. J Chem Technol Biotechnol 91:2349–2359

    CAS  Google Scholar 

  • Tsubaki S, Oono K, Hiraoka M, Onda A, Mitani T (2016) Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem 210:311–316

    CAS  PubMed  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    CAS  Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43

    CAS  Google Scholar 

  • Vonshak A (1997) Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC Press

  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T (2014) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 172:169–173

    CAS  PubMed  Google Scholar 

  • Wang L, Li Y, Sommerfeld M, Hu Q (2013) A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresour Technol 129:289–295

    CAS  PubMed  Google Scholar 

  • Warr S, Reed R, Stewart W (1985) Carbohydrate accumulation in osmotically stressed cyanobacteria (blue-green algae): interactions of temperature and salinity. New Phytol 100:285–292

    CAS  Google Scholar 

  • Wirth R, Lakatos G, Böjti T, Maróti G, Bagi Z, Kis M, Kovács A, Ács N, Rákhely G, Kovács KL (2015) Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus. J Biotechnol 215:52–61

    CAS  PubMed  Google Scholar 

  • Wuang SC, Khin MC, Chua PQD, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64

    Google Scholar 

  • Xia JR, Gao KS (2005) Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integr Plant Biol 47:668–675

    CAS  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498

    CAS  PubMed  Google Scholar 

  • Yang S, Pan C, Tschaplinski TJ, Hurst GB, Engle NL, Zhou W, Dam PA, Xu Y, Rodriguez M, Dice L, Johnson CM, Davison BH, Brown SD (2013) Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 8:e68886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao C-H, Ai J-N, Cao X-P, Xue S (2013) Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biotechnol 97:6099–6110

    CAS  PubMed  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    CAS  PubMed  Google Scholar 

  • Yoshikawa K, Toya Y, Shimizu H (2017) Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Bioprocess Biosyst Eng 40:791–796

    CAS  PubMed  Google Scholar 

  • Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501

    CAS  Google Scholar 

  • Zachleder V, Kawano S, Kuroiwa T (1996) Uncoupling of chloroplast reproductive events from cell cycle division processes by 5-fluorodeoxyuridine in the alga Scenedesmus quadricauda. Protoplasma 192:228–234

    CAS  Google Scholar 

  • Zhang Z, Shrager J, Jain M, Chang C-W, Vallon O, Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Chen X, Wang L, Zhou S, Feng H, Chen WN, Lau R (2013) Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol 128:337–344

    CAS  PubMed  Google Scholar 

  • Zhou N, Zhang Y, Wu X, Gong X, Wang Q (2011) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol 102:10158–10161

    CAS  PubMed  Google Scholar 

  • Zhu L, Hiltunen E, Antila E, Zhong J, Yuan Z, Wang Z (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sust Energ Rev 30:1035–1046

    CAS  Google Scholar 

  • Zhu Z, Luan G, Tan X, Zhang H, Lu X (2017) Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. Biotechnol Biofuels 10:93

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Soňa Pekařová for the technical assistance and Dr. Kateřina Bišová for the discussion.

Author contribution statement

Gergely Lakatos took the leading role in the writing of the manuscript. Karolína Ranglová, Jiří Kopecký, Tomáš Grivalský and João Câmara Manoel contributed during the manuscript preparation. Jiří Masojídek revised and finalized the manuscript.

Funding

This study was funded partly by the National Sustainability Program of the Czech Ministry of Education, Youth and Sports (project Algatech Plus LO1416), and by cross-border InterReg projects between Austria and the Czech Republic (Algenetics No. ATCZ15) and Bavaria and the Czech Republic (CZ-BAV 41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely Ernő Lakatos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to the memory of Prof. Ivan Šetlík.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakatos, G.E., Ranglová, K., Manoel, J.C. et al. Bioethanol production from microalgae polysaccharides. Folia Microbiol 64, 627–644 (2019). https://doi.org/10.1007/s12223-019-00732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-019-00732-0

Navigation