Skip to main content
Log in

The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The concept of operational taxonomic units (OTUs), which constructs “mathematically” defined taxa, is widely accepted and applied to describe bacterial communities using amplicon sequencing of 16S rRNA gene. OTUs are often used to infer functional traits since they are considered to fairly represent of community members. However, the link between molecular taxa, real taxa, and OTUs seems to be much more complicated. Strains of the same bacterial species (ideally belonging to the same OTU) typically only share some genes (the core genome), while other genes are strain-specific and unique. It is thus unclear to what extent are important functional traits homogeneous within an OTU and how correctly can functional traits be inferred for individual OTU members. Here, we have tested in silico the similarity of all genes and, more specifically, the set of genes encoding for glycoside hydrolases (GH) in bacterial genomes that belong to the same OTU. Genome similarity varied among OTUs, but as many as 5–78% of genes were not shared between the two bacterial genomes in the pair. The complement of GH families (the presence of gene families and the number of genes per family) differed in 95% of OTUs. In average, 43% of GH families either differed in gene counts or were present in one genome and absent in the other. These results show a serious limitation of the OTU-based approaches when used to infer the functional traits of bacterial communities and open the questions how to link environmental sequencing data and microbial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asshauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlemont R, Martiny AC (2015) Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol 81:1513–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Brookes PC, Xu JM, Zhang JB, Zhang CZ, Zhou XY, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2018) Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics, bty113.

  • Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S et al (2016) Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4:13

    Article  Google Scholar 

  • Gilbert JA, Jansson JK, Knight R (2014) The earth microbiome project: successes and aspirations. BMC Biol 12:4

    Article  CAS  Google Scholar 

  • Goberna M, Verdu M (2016) Predicting microbial traits with phylogenies. ISME J 10:959–567

    Article  PubMed  Google Scholar 

  • Hugerth LW, Andersson AF (2017) Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol 8:1561

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez DJ, Chaves-Moreno D, van Elsas JD (2015) Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep 5:13845

    Article  PubMed  PubMed Central  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lladó S, Lopez-Mondejar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  CAS  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER et al (2016) Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351:158–162

    Article  CAS  Google Scholar 

  • Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen NP, Warnow T, Pop M, White B (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. Npj Biofilms Microbiomes 2:16004

    Article  PubMed  PubMed Central  Google Scholar 

  • Puigbo P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV (2014) Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol 12:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosselló-Móra R, Amann R (2015) Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 38:209–216

    Article  PubMed  Google Scholar 

  • Schmidt TSB, Matias Rodrigues JF, von Mering C (2014) Ecological consistency of SSU rRNA-based operational taxonomic units at a global scale. PLoS Comput Biol 10:e1003594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonov M, Leach RW, Wingreen NS (2015) Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J 9:68–80

    Article  CAS  PubMed  Google Scholar 

  • VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 9:2435–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e0057923

    Article  Google Scholar 

  • Yin YB, Mao XZ, Yang JC, Chen X, Mao FL, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman AE, Martiny AC, Allison SD (2013) Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7:1187–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Czech Science Foundation (18-25706S) and by the Ministry of Education, Youth and Sports of the Czech Republic (LTT17022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baldrian.

Electronic supplementary material

Supplementary Table 1

List of bacterial genomes used in this paper. (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lladó Fernández, S., Větrovský, T. & Baldrian, P. The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiol 64, 19–23 (2019). https://doi.org/10.1007/s12223-018-0627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0627-y

Navigation