Skip to main content
Log in

Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

It is becoming increasingly evident that selecting an optimal source of mesenchymal stromal cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that all data and materials support the published claims and comply with field standards.

References

  1. Richardson, S. M., Kalamegam, G., Pushparaj, P. N., Matta, C., Memic, A., Khademhosseini, A., Mobasheri, R., Poletti, F. L., Hoyland, J. A., & Mobasheri, A. (2016). Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods, 99, 69–80.

    Article  CAS  PubMed  Google Scholar 

  2. Wegmeyer, H., Bröske, A. M., Leddin, M., Kuentzer, K., Nisslbeck, A. K., Hupfeld, J., Wiechmann, K., Kuhlen, J., von Schwerin, C., Stein, C., Knothe, S., Funk, J., Huss, R., & Neubauer, M. (2013). Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells and Development, 22(19), 2606–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gomez-Salazar, M., Gonzalez-Galofre, Z. N., Casamitjana, J., Crisan, M., James, A. W., & Péault, B. (2020). Five Decades Later, Are Mesenchymal Stem Cells Still Relevant? Frontiers in Bioengineering and Biotechnology, 8, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fitzsimmons, R. E. B., Mazurek, M. S., Soos, A., & Simmons, C. A. (2018). Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering. Stem Cells International, 2018, 8031718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Viswanathan, S., Shi, Y., Galipeau, J., Krampera, M., Leblanc, K., Martin, I., Nolta, J., Phinney, D. G., & Sensebe, L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy, 21(10), 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  6. Tarulli, G. A., Stanton, P. G., & Meachem, S. J. (2012). Is the Adult Sertoli Cell Terminally Differentiated? Biology of Reproduction, 87(1), 13, 1–11.

  7. França, L. R., Hess, R. A., Dufour, J. M., Hofmann, M. C., & Griswold, M. D. (2016). The Sertoli cell: One hundred fifty years of beauty and plasticity. Andrology, 4(2), 189–212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chikhovskaya, J. V., van Daalen, S. K. M., Korver, C. M., Repping, S., & van Pelt, A. M. M. (2014). Mesenchymal origin of multipotent human testis-derived stem cells in human testicular cell cultures. Molecular Human Reproduction, 20(2), 155–167.

    Article  CAS  PubMed  Google Scholar 

  9. Sadeghian-Nodoushan, F., Aflatoonian, R., Borzouie, Z., Akyash, F., Fesahat, F., Soleimani, M., Aghajanpour, S., Moore, H. D., & Aflatoonian, B. (2016). Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Molecular Reproduction and Development, 83(4), 312–323.

    Article  CAS  PubMed  Google Scholar 

  10. Gong, D., Zhang, C., Li, T., Zhang, J., Zhang, N., Tao, Z., Zhu, W., & Sun, X. (2017). Are Sertoli cells a kind of mesenchymal stem cells? American Journal of Translational Research, 9(3), 1067–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Holan, V., Hermankova, B., Bohacova, P., Kossl, J., Chudickova, M., Hajkova, M., Krulova, M., Zajicova, A., & Javorkova, E. (2016). Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Reviews and Reports, 12(6), 654–663.

    Article  CAS  PubMed  Google Scholar 

  12. Mital, P., Kaur, G., & Dufour, J. M. (2010). Immunoprotective Sertoli cells: Making allogeneic and xenogeneic transplantation feasible. Reproduction, 139(3), 495–504.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, H. M., Byoung, C. O., Lim, D. P., Lee, D. S., Lim, H. G., Chun, S. P., & Jeong, R. L. (2008). Mechanism of humoral and cellular immune modulation provided by porcine Sertoli cells. Journal of Korean Medical Science, 23(3), 514–520.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Campese, A. F., Grazioli, P., de Cesaris, P., Riccioli, A., Bellavia, D., Pelullo, M., Noce, C., Verkhovskaia, S., Filippini, A., Latella, G., Screpanti, I., Ziparo, E., & Starace, D. (2014). Mouse Sertoli Cells Sustain De Novo Generation of Regulatory T Cells by Triggering the Notch Pathway Through Soluble JAGGED11. Biology of Reproduction, 90(3), 53–54.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao, S., Zhu, W., Xue, S., & Han, D. (2014). Testicular defense systems: Immune privilege and innate immunity. Cellular and Molecular Immunology, 11(5), 428–437.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dufour, J. M., Rajotte, R. V., Kin, T., & Korbutt, G. S. (2003). Immunoprotection of rat islet xenografts by cotransplantation with Sertoli cells and a single injection of antilymphocyte serum1. Transplantation, 75(9), 1594–1596.

    Article  PubMed  Google Scholar 

  17. Shamekh, R., El-Badri, N. S., Saporta, S., Pascual, C., Sanberg, P. R., & Cameron, D. F. (2006). Sertoli cells induce systemic donor-specific tolerance in xenogenic transplantation model. Cell Transplantation, 15(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  18. Aliaghaei, A., Meymand, A. Z., Boroujeni, E., Khodagoli, F., Meftahi, G. H., Hadipour, M. M., Abdollahifar, M. A., Mesgar, S., Ahmadi, H., Danyali, S., Hasani, S., & Sadeghi, Y. (2019). Neuro-restorative effect of Sertoli cell transplants in a rat model of amyloid beta toxicity. Behavioural Brain Research, 367, 158–165.

    Article  CAS  PubMed  Google Scholar 

  19. Paliwal, S., Chaudhuri, R., Agrawal, A., & Mohanty, S. (2018). Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. Journal of Biomedical Science, 25(1), 31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Luz-Crawford, P., Hernandez, J., Djouad, F., Luque-Campos, N., Caicedo, A., Carrère-Kremer, S., Brondello, J. M., Vignais, M. L., Pène, J., & Jorgensen, C. (2019). Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Research and Therapy, 10(1), 232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Plotnikov, E. Y., Khryapenkova, T. G., Vasileva, A. K., Marey, M. V., Galkina, S. I., Isaev, N. K., Sheval, E. V., Polyakov, V. Y., Sukhikh, G. T., & Zorov, D. B. (2008). Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. Journal of Cellular and Molecular Medicine, 12(5A), 1622–1631.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Rehman, R., & …& Agrawal, A. . (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO Journal, 33(9), 994–1010.

    CAS  Google Scholar 

  23. Islam, M. N., Das, S. R., Emin, M. T., Wei, M., Sun, L., Westphalen, K., Tiwari, B. K., Jha, K. A., Barhanpurkar, A. P., Wani, M. R., Roy, S. S., Mabalirajan, U., Ghosh, B., & Bhattacharya, J. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine, 18(5), 759–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brehm, R., Zeiler, M., Rüttinger, C., Herde, K., Kibschull, M., Winterhager, E., Willecke, K., Guillou, F., Lécureuil, C., Steger, K., Konrad, L., Biermann, K., Failing, K., & Bergmann, M. (2007). A sertoli cell-specific knockout of connexin43 prevents initiation of spermatogenesis. The American journal of pathology, 171(1), 19–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sagaradze, G., Basalova, N., Kirpatovsky, V., Ohobotov, D., Nimiritsky, P., Grigorieva, O., Popov, V., Kamalov, A., Tkachuk, V., & Efimenko, A. (2019). A magic kick for regeneration: Role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Research and Therapy, 10(1), 1–10.

    Article  Google Scholar 

  26. Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying Mechanisms that Restore Spermatogenesis on Transplanting Healthy Niche Cells in Busulphan Treated Mouse Testis. Stem Cell Reviews and Reports, 12(6), 682–697.

    Article  CAS  PubMed  Google Scholar 

  27. Gauthier-Fisher, A., Kauffman, A., & Librach, C. L. (2020). Potential use of stem cells for fertility preservation. Andrology, 8(4), 862–878.

    Article  CAS  PubMed  Google Scholar 

  28. Hajkova, M., Hermankova, B., Javorkova, E., Bohacova, P., Zajicova, A., Holan, V., & Krulova, M. (2017). Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations. Stem Cell Reviews and Reports, 13(1), 104–115.

    Article  CAS  PubMed  Google Scholar 

  29. Krulová, M., Zajícová, A., Frič, J., & Holáň, V. (2002). Alloantigen-induced, T-cell-dependent production of nitric oxide by macrophages infiltrating skin allografts in mice. Transplant International, 15(2–3), 108–116.

    Article  PubMed  Google Scholar 

  30. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R., Keating, A., Prockop, D., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

  31. Duffy, M. M., Ritter, T., Ceredig, R., & Griffin, M. D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research and Therapy, 2(4), 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murray, P. J. (2017). Macrophage Polarisation. Annual Review of Physiology, 79, 541–566.

    Article  CAS  PubMed  Google Scholar 

  33. Court, A. C., Le‐Gatt, A., Luz‐Crawford, P., Parra, E., Aliaga‐Tobar, V., Bátiz, L. F., Contreras, R. A., Ortúzar, M. I., Kurte, M., Elizondo-Vega, R., Maracaja-Coutinho, V., Pino-Lagos, K., Figueroa, F. E., & Khoury, M. (2020). Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Reports, 21(2), e48052.

  34. Jackson, M. V., Morrison, T. J., Doherty, D. F., McAuley, D. F., Matthay, M. A., Kissenpfennig, A., O’Kane, C. M., & Krasnodembskaya, A. D. (2016). Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 34(8), 2210–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meligy, F. Y., Abo Elgheed, A. T., & Alghareeb, S. M. (2019). Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastructural Pathology, 43(1), 28–55.

    Article  PubMed  Google Scholar 

  36. Hsiao, C. H., Ji, A. T. Q., Chang, C. C., Chien, M. H., Lee, L. M., & Ho, J. H. C. (2019). Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Research and Therapy, 10(1), 270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kaur, G., Thompson, L. A., & Dufour, J. M. (2014). Sertoli cells-Immunological sentinels of spermatogenesis. Seminars in Cell & Developmental Biology, 30, 36–44.

    Article  CAS  Google Scholar 

  38. Bryan, E. R., Kim, J., Beagley, K. W., & Carey, A. J. (2020). Testicular inflammation and infertility: Could chlamydial infections be contributing? American Journal of Reproductive Immunology, 84(3), e13286.

  39. Luca, G., Arato, I., Sorci, G., Cameron, D. F., Hansen, B. C., Baroni, T., Donato, R., White, D. G. J., & Calafiore, R. (2018). Sertoli cells for cell transplantation: Pre-clinical studies and future perspectives. Andrology, 6(3), 385–395.

    Article  CAS  PubMed  Google Scholar 

  40. Hemendinger, R., Wang, J., Malik, S., Persinski, R., Copeland, J., Emerich, D., Gores, P., Halberstadt, C., & Rosenfeld, J. (2005). Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis. Experimental Neurology, 196(2), 235–243.

    Article  CAS  PubMed  Google Scholar 

  41. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. F., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.

    Article  CAS  PubMed  Google Scholar 

  42. da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine and Growth Factor Reviews, 20(5–6), 419–427.

    Article  CAS  Google Scholar 

  43. Mohammadzadeh, A., Pourfathollah, A. A., Shahrokhi, S., Hashemi, S. M., Moradi, S. L. A., & Soleimani, M. (2014). Immunomodulatory effects of adipose-derived mesenchymal stem cells on the gene expression of major transcription factors of T cell subsets. International Immunopharmacology, 20(2), 316–321.

    Article  CAS  PubMed  Google Scholar 

  44. Svobodova, E., Krulova, M., Zajicova, A., Pokorna, K., Prochazkova, J., Trosan, P., & Holan, V. (2012). The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or pro-inflammatory helper T-cell 17 population. Stem Cells and Development, 21(6), 901–910.

    Article  CAS  PubMed  Google Scholar 

  45. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  46. Hermankova, B., Zajicova, A., Javorkova, E., Chudickova, M., Trosan, P., Hajkova, M., Krulova, M., Zajicova, A., & Holan, V. (2016). Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells. Immunobiology, 221(2), 129–136.

    Article  CAS  PubMed  Google Scholar 

  47. Philipp, D., Suhr, L., Wahlers, T., Choi, Y.-H., & Paunel-Görgülü, A. (2018). Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarisation. Stem Cell Research & Therapy, 9(1), 286.

    Article  CAS  Google Scholar 

  48. Hajkova, M., Javorkova, E., Zajicova, A., Trosan, P., Holan, V., & Krulova, M. (2017). A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. Journal of Tissue Engineering and Regenerative Medicine, 11(5), 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  49. Mossadegh-Keller, N., & Sieweke, M. H. (2018). Testicular macrophages: Guardians of fertility. Cellular Immunology, 330, 120–125.

    Article  CAS  PubMed  Google Scholar 

  50. O’Neill, L. A. J., Kishton, R. J., & Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nature Reviews Immunology, 16(9), 553–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodriguez, A. M., Nakhle, J., Griessinger, E., & Vignais, M. L. (2018). Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 17(6), 712–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morrison, T. J., Jackson, M. V., Cunningham, E. K., Kissenpfennig, A., McAuley, D. F., O’Kane, C. M., & Krasnodembskaya, A. D. (2017). Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 196(10), 1275–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaushik, A., & Bhartiya, D. (2020). Additional Evidence to Establish Existence of Two Stem Cell Populations Including VSELs and SSCs in Adult Mouse Testes. Stem Cell Reviews and Reports, 16(5), 992–1004.

    Article  CAS  PubMed  Google Scholar 

  54. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very Small Embryonic-Like Stem Cells (VSELs): An Update and Future Directions. Circulation Research, 124(2), 208–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaushik, A., & Bhartiya, D. (2018). Pluripotent Very Small Embryonic-Like Stem Cells in Adult Testes – An Alternate Premise to Explain Testicular Germ Cell Tumors. Stem Cell Reviews and Reports, 14(6), 793–800.

    Article  CAS  PubMed  Google Scholar 

  56. Bhartiya, D., Kasiviswananthan, S., & Shaikh, A. (2012). Cellular origin of testis-derived pluripotent stem cells: A case for very small embryonic-like stem cells. Stem Cells and Development, 21(5), 670–674.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grant No. 970120 from the Grant Agency of Charles University, grant No. 19-02290S from the Grant Agency of the Czech Republic, grant No. NU21-08–00488 from Ministry of Health of the Czech Republic and the Charles University programs 4EU + /20/F4/29, SVV 260435 and 20604315 PROGRES Q43.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. MK and BP designed the study. BP, DV, VS, MHa, MHl and TT performed the experiments, MK, BP, and VH wrote the paper; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Magdalena Krulova.

Ethics declarations

Ethics Approval

This study was carried out in strict accordance with the Act No. 246/1992 Coll., on the protection of animals against cruelty, the basic law related to animal protection governing the activities of all the state authorities of animal protection in the Czech Republic, such as the Ministry of Agriculture, including the Central Commission for Animal Welfare, and the veterinary administration authorities. The authorization to use experimental animals was issued to the Faculty of Science, Charles University, 37,428/2019-MZE-18134.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1690 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porubska, B., Vasek, D., Somova, V. et al. Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Rev and Rep 17, 1905–1916 (2021). https://doi.org/10.1007/s12015-021-10197-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10197-9

Keyword

Navigation