Skip to main content
Log in

Professor Jan Vřešťál and His Contributions Towards the Implementing of Ab Initio Data into the CALPHAD Method and Extension of the Phase Diagram Calculations Down to 0 K

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The paper describes the development of implementation of ab initio results into the CALPHAD method and of calculations of phase diagrams down to 0 K, where Prof. Jan Vřešťál is among pioneers paving new ways. His scientific activities contributed considerably to improved versatility and effectivity of the CALPHAD method, which was supported by numerous descriptions of binary and ternary systems accomplished with the help of data having stronger physical grounds and thus bringing more physics into the CALPHAD approach. He also brought the CALPHAD method to Czechoslovak scientific institutions and, due to his merit, numerous younger colleagues learned to apply this very effective approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Vřešťál and J. Kučera, Vapor Pressure and Thermodynamic Study of the Co-Ni System, Metall. Mater. Trans. B, 1971, 2, p 3367–3372

    Article  Google Scholar 

  2. J. Vřešťál and K. Stránský, Determination of Thermodynamic Activities of the Nickel-Copper System Components at T equals 1400 K, Kovove Mater., 1973, 11, p 203–212

    Google Scholar 

  3. B. Million, J. Růžičková, J. Vřešťál, V.I. Patoka, V.I. Silantjev, and V.N. Kolesnik, Diffusion and Thermodynamic Properties of Ni-V System, Czech. J. Phys., 1980, 30, p 541–551

    Article  ADS  Google Scholar 

  4. J. Vřešťál and J. Velíšek, Comparison of the Fitting Capabilities of Several Equations for the Composition Dependence of Excess Free Enthalpy in Binary Alloys, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1982, 6, p 297–305

    Article  Google Scholar 

  5. J. Velíšek and J. Vřešťál, Correlation of Thermodynamic and Phase Data in System Iron-Chromium-Nickel, Kovove Mater., 1982, 20, p 645–657

    Google Scholar 

  6. A. Kroupa, J. Vřešťál, and L. Karmazin, Thermodynamic Calculation of Phase Equilibria and Determination of Boundaries of Phase Regions of Fe-X-Y-Z-C Equilibrium Diagrams, Kovove Mater., 1989, 27, p 307–315

    Google Scholar 

  7. A. Kroupa, L. Karmazin, and M. Svoboda, The Calculation of Phase Compositions of Hypereutectoid Low Alloy Steel at Temperatures Within and Around the Eutectoid Zone, Mater. Sci. Eng. A, 1990, 127, p L11–L13

    Article  Google Scholar 

  8. J. Sopoušek, A. Kroupa, R. Dojiva, and J. Vřešťál, The PD-Package for Multicomponent Isobaric Phase Equilibrium Calculations, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1993, 17, p 229–235

    Article  Google Scholar 

  9. R. Pícha, J. Vřešťál, and A. Kroupa, Prediction of Alloy Surface Tension Using a Thermodynamic Database, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2004, 28, p 141–146

    Article  Google Scholar 

  10. P. Soven, Coherent-Potential Model of Substitutional Disordered Alloys, Phys. Rev., 1967, 156, p 809–814

    Article  ADS  Google Scholar 

  11. B. Velický, S. Kirkpatrick, and H. Ehrenreich, Single-Site Approximations in Electronic Theory of Simple Binary Alloys, Phys. Rev., 1968, 175, p 747–766

    Article  ADS  Google Scholar 

  12. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel et al., Reproducibility in Density Functional Theory Calculations of Solids, Science, 2016, 351, p aad3000-1–aad3000-7

    Article  Google Scholar 

  13. F. Ducastelle, Order and Phase Stability in Alloys, North-Holland, New York, 1991

    Google Scholar 

  14. A. Gonis, Green Functions for Ordered and Disordered Systems, North Holland, Amsterdam, 1992

    MATH  Google Scholar 

  15. I. Turek, V. Drchal, J. Kudrnovský, P. Weinberger, and M. Šob, Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Springer, New York, 1997 (originally published by Kluwer, Boston, 1997)

  16. G. Ghosh, A. van de Walle, M. Asta, and G.B. Olson, Phase Stability of the Hf-Nb System: From First-Principles to CALPHAD, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2002, 26, p 491–511

    Article  Google Scholar 

  17. L. Wang, M. Šob, J. Havránková, and J. Vřešťál, First-Principles Calculations of Formation Energy in Cr-Based σ-Phases, CALPHAD XXVII, May 17-22, 1998 (Beijing, China), Abstract Book, 1998, p 14

  18. L. Kaufman, and A.T. Dinsdale, Summary of the Proceedings of the CALPHAD XXVII Meeting: 17-22 May 1998 Beijing, China, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1999, 23, p 265–303

  19. J. Vřešťál, J. Houserová, M. Šob, and M. Friák, Calculation of Phase Equilibria with σ-Phase in Some Cr-Based Systems Using First-Principles Calculation Results, The 16th Discussion Meeting on Thermodynamics of Alloys (TOFA), May 8-11, 2000 (Stockholm, Sweden), Abstract Book, 2000, p 33

  20. M. Friák, M. Šob, J. Houserová, and J. Vřešťál, Modeling the Sigma-Phase Based on First-Principles Calculations Results, CALPHAD XXIX, June 18-23, 2000 (Cambridge, MA, USA), Abstract Book, 2000, p 4

  21. L. Kaufman, Summary of the Proceedings of the Calphad XXIX Meeting: 18-23 June 2000 Massachusetts Institute of Technology Cambridge, Massachusetts, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2000, 24, p 381–426

  22. M. Friák, M. Šob, J. Houserová, and J. Vřešťál, Modelling the Sigma-Phase Based on Equilibrium Volume First-Principles Calculations Results, CALPHAD XXX, May 27-June 1, 2001 (York, England), Abstract Book, 2001, p 13

  23. F. Hayes, and A. Watson, Summary of the Proceedings of the Calphad XXX Meeting: 27th May-1st June 2001 York, England, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2001, 25, p 477–507

  24. B.P. Burton, N. Dupin, S.G. Fries, G. Grimvall, A.F. Guillermet, P. Miownik, W.A. Oates, and V. Vinograd, Using Ab Initio Calculations in the Calphad Environment, Z. Metallkd., 2001, 92, p 514–525

    Google Scholar 

  25. J. Havránková, J. Vřešťál, L.G. Wang, and M. Šob, Ab Initio Analysis of Energetics of Sigma-Phase Formation in Cr-Based Systems, Phys. Rev. B, 2001, 63, p 174104

    Article  ADS  Google Scholar 

  26. L. Kaufman, P.E.A. Turchi, W. Huang, and Z.-K. Liu, Thermodynamics of the Cr-Ta-W System by Combining the Ab Initio and CALPHAD Methods, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2001, 25, p 419–433

    Article  Google Scholar 

  27. C. Wolverton, X.-Y. Yan, R. Vijayaraghavan, and V. Ozolins, Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Zn-Mg Alloys, Acta Mater., 2002, 50, p 2187–2197

    Article  Google Scholar 

  28. J. Vřešťál, Recent Progress in Modelling of Sigma-Phase, Arch. Metall., 2001, 46(3), p 239–247

    Google Scholar 

  29. J. Vřešťál, First-Principles Calculation Results in Phase Diagram Construction, J. Min. Metall. Sect. B, 2001, 37(3-4), p 29–39

    Google Scholar 

  30. J. Houserová, M. Friák, M. Šob, and J. Vřešťál, Ab initio Calculations of Lattice Stability of Sigma-Phase and Phase Diagram in the Cr-Fe System, Comput. Mater. Sci., 2002, 25, p 562–569

    Article  Google Scholar 

  31. J. Houserová, J. Vřešťál, M. Friák, and M. Šob, Phase Diagram Calculation in Co-Cr System Using Ab Initio Determined Lattice Instability of Sigma Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2002, 26, p 513–522

    Article  Google Scholar 

  32. J. Houserová, J. Vřešťál, and M. Šob, Phase Diagram Calculations in the Co-Mo and Fe-Mo Systems Using First-Principles Results for the Sigma Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2005, 29, p 133–139

    Article  Google Scholar 

  33. K. Chvátalová, J. Houserová, and M. Šob, First Principles Calculations of Energetics of Sigma Phase Formation and Thermodynamic Modelling in Cr-Fe-W System, Mater. Sci. Eng. A, 2007, 462, p 153–158

    Article  Google Scholar 

  34. J. Pavlů, J. Vřešťál, and M. Šob, Ab Initio Study of Formation Energy and Magnetism of Sigma Phase in Cr-Fe and Cr-Co Systems, Intermetallics, 2010, 18, p 212–220

    Article  Google Scholar 

  35. J. Pavlů, J. Vřešťál, and M. Šob, Thermodynamic Modeling of Laves Phases in the Cr-Hf and Cr-Ti Systems: Reassessment Using First-Principles Results, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2010, 34, p 215–221

    Article  Google Scholar 

  36. J. Pavlů, J. Vřešťál, X.-Q. Chen, and P. Rogl, Thermodynamic Modeling of Laves Phases in the Ta-V System: Reassessment Using First-Principles Results, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2011, 35, p 103–108

    Article  Google Scholar 

  37. J. Štrof, J. Pavlů, U.D. Wdowik, J. Buršík, M. Šob, and J. Vřešťál, Laves Phase in the V-Zr System Below Room Temperature: Stability Analysis Using Ab Initio Results and Phase Diagram, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2014, 44, p 62–69

    Article  Google Scholar 

  38. J. Pavlů, J. Vřešťál, U.D. Wdowik, and M. Šob, Modelling of Phase Equilibria in the Hf-V System Below Room Temperature, J. Min. Metall. Sect. B, 2017, 53, p 239–249

    Article  Google Scholar 

  39. M. Šob, A. Kroupa, J. Pavlů, J. Vřešťál, Application of Ab Initio Electronic Structure Calculations in Construction of Phase Diagrams of Metallic Systems with Complex Phases. Solid Phase Transformations II, ed. by J. Čermák and I. Stloukal, Trans Tech Publications, Switzerland, 2009, 150, p 1–28

  40. Z.K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, J. Phase Equilib. Diffus., 2009, 30, p 517–534

    Article  Google Scholar 

  41. R. Mathieu, N. Dupin, J.-C. Crivello, K. Yaqoob, A. Breidi, J.-M. Fiorani, N. David, and J.-M. Joubert, CALPHAD Description of the Mo-Re System Focused on the Sigma Phase Modeling, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2013, 43, p 18–31

    Article  Google Scholar 

  42. A. Jacob, E. Povoden-Karadeniz, and E. Kozeschnik, Revised Thermodynamic Description of the Fe-Cr System Based on an Improved Sublattice Model of the σ Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2018, 60, p 16–28

    Article  Google Scholar 

  43. X.Q. Chen, V.T. Witusiewicz, R. Podloucky, P. Rogl, and F. Sommer, Computational and Experimental Study of Phase Stability, Cohesive Properties, Magnetism and Electronic Structure of TiMn2, Acta Mater., 2003, 51, p 1239–1247

    Article  Google Scholar 

  44. X.-Q. Chen and R. Podloucky, Miedema’s Model Revisited: the Parameter ϕ* for Ti, Zr, and Hf, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2006, 30, p 266–269

    Article  Google Scholar 

  45. C. Colinet, R. Viennois, and J.-C. Tedenac, First Principles Study of the Structural Stability of Intermetallic Compounds in the Si-Zr System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 36, p 118–126

    Article  Google Scholar 

  46. W. Xing, X.-Q. Chen, D. Li, Y. Li, and X. Ding, First-Principles Studies of Structural Stabilities and Enthalpies of Formation of Refractory Intermetallics: TM and TM3 (T = Ti, Zr, Hf; M = Ru, Rh, Pd, Os, Ir, Pt), Intermetallics, 2012, 28, p 16–24

    Article  Google Scholar 

  47. S.V. Meschel, P. Nash, Q.N. Gao, J.C. Wang, and Y. Du, The Standard Enthalpies of Formation of Some Binary Intermetallic Compounds of Lanthanide-Iron Systems by High Temperature Direct Synthesis Calorimetry, J. Alloys Compd., 2013, 578, p 465–470

    Article  Google Scholar 

  48. C. Colinet and J.-C. Tedenac, First Principles Calculations of the Stability of the T2 and D88 Phases in the V-Si-B System, Intermetallics, 2014, 50, p 108–116

    Article  Google Scholar 

  49. J.-M. Joubert, Crystal Chemistry and Calphad Modeling of the σ Phase, Prog. Mater Sci., 2008, 53, p 528–583

    Article  Google Scholar 

  50. M.H.F. Sluiter, Ab initio Lattice Stabilities of Some Elemental Complex Structures, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2006, 30, p 357–366

    Article  Google Scholar 

  51. M. Palumbo, T. Abe, C. Kocer, H. Murakami, and H. Onodera, Ab Initio and Thermodynamic Study of the Cr-Re System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2010, 34, p 495–503

    Article  Google Scholar 

  52. J.-C. Crivello, M. Palumbo, T. Abe, and J.-M. Joubert, Ab Initio Ternary σ-Phase Diagram: The Cr-Mo-Re System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2010, 34, p 487–494

    Article  Google Scholar 

  53. J.-C. Crivello, R. Souques, A. Breidi, N. Bourgeois, and J.-M. Joubert, ZenGen, A Tool to Generate Ordered Configurations for Systematic First-Principles Calculations: The Cr-Mo-Ni-Re System as a Case Study, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 51, p 233–240

    Article  Google Scholar 

  54. A. Breidi, S.G. Fries, M. Palumbo, and A.V. Ruban, First-Principles Modeling of Energetic and Mechanical Properties of Ni-Cr, Ni-Re and Cr-Re Random Alloys, Comput. Mater. Sci., 2016, 117, p 45–53

    Article  Google Scholar 

  55. A. Wang, S.L. Shang, D. Zhao, J. Wang, L. Chen, Y. Du, Z.-K. Liu, T. Xu, and S. Wang, Structural, Phonon and Thermodynamic Properties of FCC-Based Metal Nitrides from First-Principles Calculations, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 37, p 126–131

    Article  Google Scholar 

  56. M. Schick, B. Hallstedt, A. Glensk, B. Grabowski, T. Hickel, M. Hampl, J. Gröbner, J. Neugebauer, and Q. Schmid-Fetzer, Combined Ab Initio, Experimental, and CALPHAD Approach for an Improved Thermodynamic Evaluation of the Mg-Si System, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 37, p 77–86

    Article  Google Scholar 

  57. A. Jacob, C. Schmetterer, L. Singheiser, A. Gray-Weale, B. Hallstedt, and A. Watson, Modeling of Fe-W Phase Diagram Using First Principles and Phonons Calculations, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 50, p 92–104

    Article  Google Scholar 

  58. B. Kaplan, D. Korbmacher, A. Blomqvist, and B. Grabowski, Finite Temperature Ab Initio Calculated Thermodynamic Properties of Orthorhombic Cr3C2, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2016, 53, p 72–77

    Article  Google Scholar 

  59. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1991, 15, p 317–425

    Article  Google Scholar 

  60. L. Kaufman, The Lattice Stability of Metals—I. Titanium and Zirconium, Acta Metall., 1959, 7, p 575–587

    Article  Google Scholar 

  61. W. Chase, I. Ansara, A. Dinsdale, G. Eriksson, G. Grimvall, L. Höglund, and H. Yokokawa, Workshop on Thermodynamic Models and Data for Pure Elements and Other Endmembers of Solutions: Schloβ Ringberg, Feb. 26-March 3, 1995, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1995, 19, p 437–447

  62. B. Sundman and F. Aldinger, The Ringberg Workshop 1995 on Unary Data for Elements and Other End-Members of Solutions, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 1995, 19, p 433–436

    Article  Google Scholar 

  63. Q. Chen and B. Sundman, Modeling of Thermodynamic Properties for BCC, FCC, Liquid, and Amorphous Iron, J. Phase Equilib., 2001, 22, p 631–644

    Article  Google Scholar 

  64. J. Vřešťál, J. Štrof, and J. Pavlů, Extension of SGTE Data for Pure Elements to Zero Kelvin Temperature—A Case Study, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2012, 37, p 37–48

    Article  Google Scholar 

  65. Q. Chen and B. Sundman, Calculation of Debye Temperature for Crystalline Structures—A Case Study on Ti, Zr, and Hf, Acta Mater., 2001, 49, p 947–961

    Article  Google Scholar 

  66. C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996

    MATH  Google Scholar 

  67. G. Grimvall, Thermophysical Properties of Materials, Elsevier North-Holland, Amsterdam, 1999

    Google Scholar 

  68. J. Pavlů, P. Řehák, J. Vřešťál, and M. Šob, Combined Quantum-Mechanical and Calphad Approach to Description of Heat Capacity of Pure Elements Below Room Temperature, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 51, p 161–171

    Article  Google Scholar 

  69. S. Bigdeli, H. Mao, and M. Selleby, On the Third-Generation Calphad Databases: An Updated Description of Mn, Phys. Status Solidi B, 2015, 252(10), p 1–10

    Article  Google Scholar 

  70. S. Bigdeli, H. Ehteshami, Q. Chen, and M. Selleby, New Description of Metastable HCP Phase for Unaries Fe and Mn: Coupling Between First-Principles Calculations and Calphad Modelling, Phys. Status Solidi B, 2016, 253(9), p 1830–1836

    Article  ADS  Google Scholar 

  71. Z. Li, S. Bigdeli, H. Mao, and M. Selleby, Thermodynamic Evaluation of Pure Co for the Third Generation of Thermodynamic Databases, Phys. Status Solidi B, 2017, 254(2), p 1600231

    Article  ADS  Google Scholar 

  72. Z. Li, H. Mao, and M. Selleby, A New Thermodynamic Description of Stable Cr-Carbides for the Third Generation of Thermodynamic Database, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2017, 59, p 107–111

    Article  Google Scholar 

  73. A.V. Khvan, A.T. Dinsdale, I.A. Uspenskaya, M. Zhilin, T. Babkina, and A.M. Phiri, A Thermodynamic Description of Data for Pure Pb from 0 K Using the Expanded Einstein Model for the Solid and the Two State Model for the Liquid Phase, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2018, 60, p 144–155

    Article  Google Scholar 

  74. S. Bigdeli, H. Mao, and M. Selleby, [P63] On the 3rd Generation Calphad Databases: Updated Description of Mn and Reassessment of Binary Fe-Mn, Conference Abstract, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2015, 51, p 394

    Article  Google Scholar 

  75. Y. Jiang, S. Zomorodpoosh, I. Roslyakova, and L. Zhanga, Thermodynamic Re-Assessment of Binary Cr-Nb System Down to 0 K, CALPHAD: Comput. Coupling Phase Diagr. Thermochem., 2018, 62, p 109–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Šob.

Additional information

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Jan Vřešťál’s 80th birthday. This special issue was organized by Prof. Andrew Watson, Coventry University, and Dr. Aleš Kroupa, Institute of Physics of Materials, Brno, Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroupa, A., Pavlů, J. & Šob, M. Professor Jan Vřešťál and His Contributions Towards the Implementing of Ab Initio Data into the CALPHAD Method and Extension of the Phase Diagram Calculations Down to 0 K. J. Phase Equilib. Diffus. 40, 3–9 (2019). https://doi.org/10.1007/s11669-018-0704-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0704-6

Keywords

Navigation