Skip to main content
Log in

Radiofrequency and Microwave Dielectric Properties of Plasma Sprayed and Annealed Thick Layers of Titanium Dioxide

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) was plasma sprayed using a high feed-rate spray system with hybrid water–argon stabilization torch (WSP-H). TiO2 powder agglomerated from nanometric particles was used as the feedstock. The produced coating had thickness over 4 mm, to be comparable with bulk ceramic bodies. The deposit was removed from the substrate and annealed in air to reoxidize the oxygen deficient as-sprayed titania and to obtain material with a proper dielectric behavior. Besides the microstructure studies, radiofrequency dielectric spectroscopy and microwave dielectric spectroscopy were in the focus of investigation. The approach to annealing of an extremely thick coating is studied: The significance of annealing of a large-area thick coating is discussed, as the role of grain interior and grain boundaries in the charge transport is influenced. Relative permittivity εr 94 and the Q*f product 12,800 GHz were reached at frequency 4 GHz, whereas the frequency response under 1 MHz was mapped continuously and the values (i.e., low and stable loss tangent) confirmed that a sprayed and air-annealed TiO2 is able to approach or also overperform dielectric parameters typical for TiO2 sintered bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Neufuss, P. Chraska, B. Kolman, S. Sampath, and Z. Travnicek, Properties of Plasma-Sprayed Freestanding Ceramic Parts, J. Therm. Spray Technol., 1997, 6(4), p 434-438

    Article  CAS  Google Scholar 

  2. P. Ctibor, B. Nevrlá, K. Neufuss, J. Petrášek, and J. Sedláček, Plasma Spray Coatings of Natural Ores From Structural, Mechanical, Thermal, and Dielectric Viewpoints, Coatings, 2020, 10, p 3

    Article  CAS  Google Scholar 

  3. P. Ctibor, B. Nevrla, Z. Pala, J. Sedlacek, J. Soumar, T. Kubatik, K. Neufuss, M. Vilemova, and J. Medricky, Study on the Plasma Sprayed Amorphous Diopside and Annealed Fine-grained Crystalline Diopside, Ceram. Int., 2015, 45, p 10578-10586

    Article  Google Scholar 

  4. P. Ctibor, Z. Pala, J. Sedlacek, V. Stengl, I. Pis, T. Zahoranová, and V. Nehasil, Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior, J. Therm. Spray Technol., 2012, 21(3-4), p 425-434

    Article  CAS  Google Scholar 

  5. M.C. Bordes, M. Vicent, R. Moreno, J. García-Montaño, A. Serra, and E. Sánchez, Application of Plasma-sprayed TiO2 Coatings for Industrial (Tannery) Wastewater Treatment, Ceram. Int., 2015, 41, p 14468-14474

    Article  CAS  Google Scholar 

  6. P. Ctibor, K. Neufuss, and P. Chraska, Microstructure and Slurry Abrasion Resistance of Plasma Sprayed Titania Coatings, J. Therm. Spray Technol., 2006, 15(4), p 689-694

    Article  CAS  Google Scholar 

  7. C. Moreau, J.-F. Bisson, R.S. Lima, and B.R. Marple, Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure Appl. Chem., 2005, 77(2), p 443-462

    Article  CAS  Google Scholar 

  8. C. Yu, Y. Zeng, B. Yang, R. Donnan, J. Huang, Z. Xiong, A. Mahajan, B. Shi, H. Ye, R. Binions, N.V. Tarakina, M.J. Reece, and H. Yan, Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-Low-Loss, Sci. Rep., 2017, 7, p 6639-6645

    Article  Google Scholar 

  9. Y. Zhu and Ch Ding, Characterization of Plasma Sprayed Nano-titania Coatings by Impedance Spectroscopy, J. Eur. Ceram. Soc., 2000, 20, p 127-132

    Article  CAS  Google Scholar 

  10. J. Sedláček, P. Ctibor, J. Kotlan, and Z. Pala, Dielectric Properties of CaTiO3 Coatings Prepared by Plasma Spraying, Surf. Eng., 2013, 29(5), p 384-389

    Article  Google Scholar 

  11. P. Ctibor, J. Sedlacek, and Z. Pala, Structure and Properties of Plasma Sprayed BaTiO3 Coatings After Thermal Posttreatment, Ceram. Int., 2015, 41, p 7453-7460

    Article  CAS  Google Scholar 

  12. P. Ctibor, I. Pis, J. Kotlan, Z. Pala, I. Khalakhan, V. Stengl, and P. Homola, Microstructure and Properties of Plasma-sprayed Mixture of Cr2O3 and TiO2, J. Therm. Spray Technol., 2013, 22(7), p 1163-1169

    Article  CAS  Google Scholar 

  13. C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas, Permittivity Properties of Thermally Treated TiO2, Mater. Lett., 2004, 58, p 1502-1507

    Article  CAS  Google Scholar 

  14. A. Sharma, A. Gouldstone, S. Sampath, and R.J. Gambino, Anisotropic Electrical Conduction From Heterogeneous Oxidation States in Plasma Sprayed TiO2 Coatings, J. Appl. Phys., 2006, 100, p 114906

    Article  Google Scholar 

  15. D.E. Bullard and D.C. Lynch, Reduction of Titanium Dioxide in a Nonequilibrium Hydrogen Plasma, Metall. Mater. Trans. B, 1997, 28B, p 1069-1080

    Article  CAS  Google Scholar 

  16. P. Ctibor, J. Savkova, O. Blahova, Plasma Sprayed TiO2 Coatings—Structure, Microhardness and Friction of Various States of Titania with Oxygen-Deficient Stoichiometry, Global Roadmap for Ceramics, ICCC-2 Proceedings, Verona, Italy, June 29–July 4 2008

  17. J. Breeze, Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement, Springer Theses, Springer, Berlin, 2016, https://doi.org/10.1007/978-3-319-44547-2_2

    Book  Google Scholar 

  18. P. Guillon, Y. Garault, Q-Factors of Free and Shielded Cylindrical Dielectric Resonators, 1977 IEEE MTT-S International Microwave Symposium Digest, San Diego, CA, USA, 1977

  19. P. Ctibor, J. Sedlacek, and Z. Pala, Dielectric and Electrochemical Properties Through-thickness Mapping on Extremely Thick Plasma Sprayed TiO2, Ceram. Int., 2016, 42, p 7183-7191

    Article  CAS  Google Scholar 

  20. S. Marinel, D.H. Choi, R. Heuguet, D. Agrawal, and M. Lanagan, Broadband Dielectric Characterization of TiO2 Ceramics Sintered Through Microwave and Conventional Processes, Ceram. Int., 2013, 39, p 299-306

    Article  CAS  Google Scholar 

  21. D. Regonini, V. Adamaki, C.R. Bowen, S.R. Pennock, J. Taylor, and A.C.E. Dent, AC Electrical Properties of TiO2 and Magnéli Phases, TinO2n−1, Solid State Ionics, 2012, 229, p 38-44

    Article  CAS  Google Scholar 

  22. C.M. Mo, L. Zhang, and G. Wang, Characteristics of Dielectric Behavior in Nanostructured Materials, Nanostruct. Mater., 1995, 6, p 823-826

    Article  Google Scholar 

  23. J. Krupka and J. Mazierska, Single Crystal Dielectric Resonators for Low Temperature Electronics Applications, IEEE Trans. Microw. Theory Tech. 2000, 48(7), p 1270-1274

    Article  CAS  Google Scholar 

  24. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods, J. Nanomater., 2014, 2014, p 124814

    Article  Google Scholar 

  25. A.E. Freitas, T.M. Manhabosco, R.J.C. Batista, A.K. Rego Segundo, H.X. Araújo, F.G.S. Araújo, and A.R. Costa, Development and Characterization of Titanium Dioxide Ceramic Substrates with High Dielectric Permittivities, Materials, 2020, 13, p 386-393

    Article  CAS  Google Scholar 

  26. R.S. Lima and B.R. Marple, From APS to HVOF Spraying of Conventional and Nanostructured Feedstock Powders: A Study on the Enhancement of the Mechanical Properties, Surf. Coat. Technol., 2006, 200, p 3428-3437

    Article  CAS  Google Scholar 

  27. M.C. Bordes, M. Vicent, A. Moreno, R. Moreno, A. Borrell, M.D. Salvador, and E. Sánchez, Microstructure and Photocatalytic Activity of APS Coatings Obtained from Different TiO2 Nanopowders, Surf. Coat. Technol., 2013, 220, p 179-186

    Article  CAS  Google Scholar 

  28. P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, R. Jeyasekaran, and M. Vimalan, Electrical Properties of Green Synthesized TiO2 Nanoparticles, Advances in Applied Science Research, 2016, 7(3), p 158-168

    CAS  Google Scholar 

  29. M.N. Gardos, Magnéli Phases of Anion-Deficient Rutile as Lubricious Oxides. Part I. Tribological Behavior of Single-Crystal and Polycrystalline Rutile (TinO2n−1), Tribol. Lett., 2000, 8(2-3), p 6665-6678

    Google Scholar 

  30. P. Ctibor, J. Čížek, J. Sedláček, and F. Lukáč, Dielectric Properties and Vacancy-Like Defects in Plasma-Sprayed Barium Titanate, J. Am. Ceram. Soc., 2017, 100(7), p 2972-2983

    Article  CAS  Google Scholar 

  31. D.K. Dwivedi, V. Kumar, M. Dubey, and H.P. Pathak, Structural, Electrical and Optical Investigations of CdSe Nanoparticles, Chalcogenide Lett., 2011, 8, p 521-528

    CAS  Google Scholar 

  32. B.T. Hatton, K. Landskron, W.J. Hunks, M.R. Bennett, D. Shukaris, D.D. Perovic, and G.A. Ozin, Materials Chemistry for Low-k Materials, Mater. Today, 2006, 9, p 22-31

    Article  CAS  Google Scholar 

  33. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, Cambridge, 1998

    Book  Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley Eastern Limited, New Delhi, 1996

    Google Scholar 

  35. D. Mardare, C. Baban, R. Gavrila, M. Modreanu, and G.I. Rusu, On the Structure, Morphology and Electrical Conductivities of Titanium Oxide Thin Films, Surf. Sci., 2002, 507-510, p 468-472

    Article  CAS  Google Scholar 

  36. A.J. Realpe, D.D. Núñez, and M.M. Acevedo, Impedance Analysis of TiO2 Nanoparticles Prepared by Green Chemical Mechanism, Contemp. Eng. Sci., 2018, 11(15), p 737-744

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant Agency of the Czech Technical University in Prague, No. SGS18/070/OHK3/1T/13. Jan Petrášek (FEE CTU Prague) is acknowledged for the elevated temperature dielectric measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ctibor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 7165 kb)

Supplementary material 2 (TIFF 1029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ctibor, P., Sedláček, J., Papež, V. et al. Radiofrequency and Microwave Dielectric Properties of Plasma Sprayed and Annealed Thick Layers of Titanium Dioxide. J Therm Spray Tech 29, 1718–1727 (2020). https://doi.org/10.1007/s11666-020-01065-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01065-y

Keywords

Navigation