Skip to main content
Log in

Fracture Toughness of Cold Sprayed Pure Metals

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The study of fracture toughness of pure Al, Cu, Ni and Ti deposited by cold spray was performed in order to obtain a fundamental understanding of the damage process and quantify the material performance. Rectangular specimens cut from self-standing deposits with fatigue pre-cracks were tested in three-point bending. The KIC values were obtained from J-R curves following the ASTM E1820 standard. The stress–strain behavior of the tested material was obtained from supplementary four-point bending. The cold spray deposits exhibited significantly lower fracture toughness than the corresponding wrought materials. The reduction was more pronounced for coatings with limited ductility (Ti and Cu), where the fracture toughness reached less than 12% of the wrought counterpart only. The higher ductility coatings of Al and Ni possessed fracture toughness of 18–25% of the wrought reference materials. The performed fractographic analysis revealed inter-particular decohesion as the major failure mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Petráčková, J. Kondás, and M. Guagliano, Fixing a Hole (with Cold Spray), Int. J. Fatigue, 2018, 110, p 144-152

    Article  Google Scholar 

  2. D. Tejero-Martin, M. Rezvani Rad, A. McDonald, and T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J. Therm. Spray Technol., 2019, 28(4), p 598-644

    Article  CAS  Google Scholar 

  3. G.R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Applied Mechanics Division Summer Conference, ASME, 1957.

  4. J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., (1968).

  5. C1421-18, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, ASTM Book of Standards.

  6. ASTM E399-17, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K IC of Metallic Materials, ASTM Book of Standards, ASTM International (West Conshohocken, PA, 2017).

  7. E1820-18ae1, Standard Test Method for Measurement of Fracture Toughness, ASTM Standards.

  8. J. Salem, G. Quinn, and M. Jenkins, Measuring the Real Fracture Toughness of Ceramics: ASTM C 1421. In Fracture Mechanics of Ceramics, Springer US (Boston, MA), pp. 531–553.

    Chapter  Google Scholar 

  9. X.-K. Zhu and J.A. Joyce, “DigitalCommons@University of Nebraska-Lincoln Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization,” (n.d.).

  10. F. Kroupa and J. Plesek, Nonlinear Elastic Behavior in Compression of Thermally Sprayed Materials, Mater. Sci. Eng. A, 2002, 328(1–2), p 1-7

    Article  Google Scholar 

  11. S. Zhang and X. Zhang, Toughness Evaluation of Hard Coatings and Thin Films, Thin Solid Films, 2012, 520(7), p 2375-2389

    Article  CAS  Google Scholar 

  12. A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223

    Article  CAS  Google Scholar 

  13. C.K. Lin and C.C. Berndt, Measurement and Analysis of Adhesion Strength for Thermally Sprayed Coatings, J. Therm. Spray Technol., 1994, 3(1), p 75-104

    Article  CAS  Google Scholar 

  14. S.R. Choi, D. Zhu, and R.A. Miller, Fracture Behavior under Mixed-Mode Loading of Ceramic Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures, Eng. Fract. Mech., 2005, 72(13), p 2144-2158

    Article  Google Scholar 

  15. S.R. Choi, D. Zhu, and R.A. Miller, Mechanical Properties/Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2005, 1(4), p 330-342

    Article  Google Scholar 

  16. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Ceram. Soc., 1976, 59(7–8), p 371-372

    Article  CAS  Google Scholar 

  17. G.D. Quinn and R.C. Bradt, On the Vickers Indentation Fracture Toughness Test, J. Am. Ceram. Soc., 2007, 90(3), p 673-680

    Article  CAS  Google Scholar 

  18. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744

    Article  CAS  Google Scholar 

  19. R.J. Damani and E.H. Lutz, Microstructure, Strength and Fracture Characteristics of a Free-Standing Plasma-Sprayed Alumina, J. Eur. Ceram. Soc., 1997, 17(11), p 1351-1359

    Article  CAS  Google Scholar 

  20. H. Seiner, J. Cizek, P. Sedlák, R. Huang, J. Cupera, I. Dlouhy, and M. Landa, Elastic Moduli and Elastic Anisotropy of Cold Sprayed Metallic Coatings, Surf. Coatings Technol., 2016, 291, p 342-347

    Article  CAS  Google Scholar 

  21. K. Yang, W. Li, X. Yang, and Y. Xu, Anisotropic Response of Cold Sprayed Copper Deposits, Surf. Coatings Technol., 2018, 335, p 219-227

    Article  CAS  Google Scholar 

  22. B. Bangstein, M. Ellingsen, and N. Scholl, A Method of Fracture Toughness Measurement and Effect of Partial Annealing on Monolithic Thick Cold Sprayed Aluminum 6061 Deposits, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2016.

  23. A.G. Gavras, D.A. Lados, V.K. Champagne, and R.J. Warren, Effects of Processing on Microstructure Evolution and Fatigue Crack Growth Mechanisms in Cold-Spray 6061 Aluminum Alloy, Int. J. Fatigue, 2018, 110, p 49-62

    Article  CAS  Google Scholar 

  24. J. Cizek, T. Chraska, O. Kovarik, J. Siegl, and J. Kondas, “Fatigue Crack Propagation in Cold Sprayed Metallic Coatings,” ITSC 2018Proceedings of the International Thermal Spray Conference, F. Azarmi, K. Balani, T. Eden, T. Hussain, Y.-C. Lau, H. Li, K. Shinoda, F.-L. Toma, and J. Veilleux, Eds., Orlando, FL, USA, 2018.

  25. ASTM, “E1820: Standard Test Method for Measurement of Fracture Toughness,” Astm, (2015).

  26. O. Kovarik, A. Materna, J. Siegl, J. Cizek, and J. Klecka, Fatigue Crack Growth in Plasma-Sprayed Refractory Materials, J. Therm. Spray Technol., 2019, 28(1–2), p 87-97

    Article  CAS  Google Scholar 

  27. H. Herbert, Ueber Den Zusammenhang Der Biegungselastizität Des Gußeisens Mit Seiner Zug- Und Druckelastizität, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Springer, Berlin, 1910, p 39-81

    Google Scholar 

  28. R.A. Mayville and I. Finnie, Uniaxial Stress-Strain Curves from a Bending Test, Exp. Mech., 1982, 22(6), p 197-201

    Article  Google Scholar 

  29. G.V. Guinea, J. Planas, and M. Elices, Stress Intensity Factor, Compliance and CMOD for a General Three-Point-Bend Beam, Int. J. Fract., 1998, 89, p 103-116

    Article  Google Scholar 

  30. J. Blaber, B. Adair, and A. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp. Mech., 2015, 55(6), p 1105-1122

    Article  Google Scholar 

  31. O. Kovářík, P. Haušild, J. Medřický, L. Tomek, J. Siegl, R. Mušálek, N. Curry, and S. Björklund, Fatigue Crack Growth in Bodies with Thermally Sprayed Coating, J. Therm. Spray Technol., 2016, 25(1–2), p 311-320

    Article  Google Scholar 

  32. R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, “Non-Linear Mechanical Behavior of Plasma Sprayed Coatings under Mechanical and Thermal Loading,” Proceedings of the International Thermal Spray Conference, 2009, pp. 914–919.

  33. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  CAS  Google Scholar 

  34. T.H. Becker, M. Mostafavi, R.B. Tait, and T.J. Marrow, An Approach to Calculate the J-Integral by Digital Image Correlation Displacement Field Measurement, Fatigue Fract. Eng. Mater. Struct., 2012, 35(10), p 971-984

    Article  Google Scholar 

  35. O. Kovarik, J. Siegl, J. Cizek, T. Chraska, and J. Kondas, Fracture Toughness of Cold Sprayed Pure Metals, International Thermal Spray Conference (ITSC), 2019.

  36. M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, and C.A. Schuh, Adiabatic Shear Instability Is Not Necessary for Adhesion in Cold Spray, Acta Mater., 2018, 158, p 430-439

    Article  CAS  Google Scholar 

  37. Y. Zou, D. Goldbaum, J.A. Szpunar, and S. Yue, Microstructure and Nanohardness of Cold-Sprayed Coatings: Electron Backscattered Diffraction and Nanoindentation Studies, Scr. Mater., 2010, 62(6), p 395-398

    Article  CAS  Google Scholar 

  38. S.P. Beyaev, V.A. Likhacev, M.M. Myshliaev, and O.N. Senkov, Dynamic Recrystallization of Aluminum, Phys. Met. Metallogr., 1981, 52(3), p 156-164

    Google Scholar 

Download references

Acknowledgments

Financial support by the European Regional Development Fund in the frame of the project Centre of Advanced Applied Sciences (No. CZ.02.1.01/0.0/0.0/16_019/0000778) and the Czech Science Foundation project GACR 17-13573S is gratefully acknowledged. Petr Jaroš is acknowledged for the highly precise miniature strain gaging work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Kovarik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovarik, O., Siegl, J., Cizek, J. et al. Fracture Toughness of Cold Sprayed Pure Metals. J Therm Spray Tech 29, 147–157 (2020). https://doi.org/10.1007/s11666-019-00956-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00956-z

Keywords

Navigation